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Abstract. We consider a long-term portfolio choice problem with two illiquid and correlated
assets and formulate it as an eigenvalue problem in the form of a variational inequality. The
eigenvalue is associated with the portfolio’s optimal long-term growth rate, and the free
boundaries implied by the variational inequality correspond to the optimal trading strategy.
After proving the existence and uniqueness of viscosity solutions for the eigenvalue problem,
we perform an asymptotic expansion in terms of small correlations and obtain semi-analytical
approximations of the free boundaries and the optimal growth rate. Our leading order
expansion implies that the free boundaries are orthogonal to each other at four corners and
have C1 regularity. We propose an efficient numerical algorithm based on the expansion, which
proves to be accurate even for large correlations and transaction costs. Moreover, following
the approximate trading strategy, the resulting growth rate is very close to the optimal one.
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Figure 1. The No-transaction Regions with Different Correlations (Left: ρ = 0.1,
Right: ρ = 0.3). In each plot, the thick black (resp. blue) dot is the Merton’s strategy in the
absence of transaction costs but with a non-zero (resp. zero) correlation; The blue dashed
rectangle is the uncorrelated case (i.e., ρ = 0) but with transaction costs; The red dotted
lines are numerical solution in the presence of both correlation and transaction costs; The
black solid lines are the asymptotic expansion solution in the presence of both correlation and
transaction costs. Other parameters are summarized in Table 2.

1. Introduction

Merton (1969, 1971) pioneers in continuous time portfolio selection problems. Magill and
Constantinides (1976) introduce transaction costs to Merton’s model and show that a no-
transaction region exists. In this paper, we consider a long-term investment problem for a
constant absolute risk aversion (CARA) investor who faces proportional transaction costs and
has access to two correlated risky assets as well as a riskfree asset. If the risky assets are
uncorrelated, Liu (2004) shows that the problem can be reduced, by virtue of the separability
of the CARA utility function, to the single risky asset case, which leads to the separability of
the optimal investment strategy, i.e., keeping the dollar amount invested in each risky asset
between two constant levels. Graphically, the no-transaction region is a rectangle in the two
risky assets plane for the uncorrelated case; see the blue dashed lines in Figure 1. However, the
separability loses effect when risky assets are correlated. We aim to employ asymptotic analysis
to investigate how the correlation of two risky assets affects the optimal trading strategy and
the portfolio’s long-term growth rate.

In the presence of proportional transaction costs, the long-term investment problem can
be formulated as an eigenvalue problem in the form of a variational inequality with gradient
constraints, where the eigenvalue represents the long-term excess growth rate (i.e., the long-
term growth rate minus the riskfree rate), and the free boundaries implied by the variational
inequality correspond to the optimal trading strategy. Due to the lack of analytical solutions,
we provide a theoretical proof for the existence and uniqueness of viscosity solutions to the
eigenvalue problem. To characterize the optimal trading strategy, one needs to locate the free
boundaries. Despite numerical methods (e.g., the finite difference method) can be used, a
large amount of computation is required to accurately identify the free boundaries as they are
associated with the gradient of the corresponding value function. Moreover, numerical methods
are likely unstable when transaction costs are tiny. In contrast, our asymptotic expansion gives
a semi-analytical approximation solution, which efficiently approximates the optimal trading
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strategy. The asymptotic expansion also allows us to quickly obtain a reference of the long-term
excess growth rate. Moreover, numerical experiments reveal that following the approximate
trading strategy, the resulting growth rate is very close to the optimal one. Besides, asymptotic
analysis allows us to study the behavior of optimal trading strategy qualitatively. In particular,
the leading order in our asymptotic expansion shows that, compared to the uncorrelated case,
the no-transaction region is no longer a rectangle but a quadrangle with curved boundaries
being orthogonal to each other at four corners; see Figure 1. This orthogonality implies that
the optimal trading boundaries have certain regularity, which sheds light on the future study
on the regularity of the trading boundaries in high dimensional cases.

Related Literature. This paper adds to a large body of literature on portfolio selection
with transaction costs. Since the seminal work in Magill and Constantinides (1976), Merton’s
model with transaction costs has been extensively studied along different lines, e.g., theoretical
characterization of the no-transaction region (Davis and Norman (1990), Shreve and Soner
(1994), Liu and Loewenstein (2002), Dai and Yi (2009), Dai et al. (2009), Chen and Dai (2013)),
the effect of transaction costs on liquidity premium (Constantinides (1986), Jang et al. (2007)),
utility indifference pricing (Davis et al. (1993), Constantinides and Zariphopoulou (2001)),
martingale approach (Cvitanic and Karatzas (1996)), shadow prices (Kallsen and Muhle-Karbe
(2010)), numerical solutions (Gennotte and Jung (1994), Muthuraman (2006), Muthuraman and
Kumar (2006), Dai and Zhong (2010)), risk-sensitive asset management (Bielecki and Pliska
(2000), Bielecki et al. (2004)), and asymptotic analysis.

This paper is closely related to the extensive literature on asymptotic analysis with small
transaction costs that has gained a lot of attention since the early important contributions by
Shreve and Soner (1994), Atkinson and Wilmott (1995), Whalley and Wilmott (1997), and
Janeček and Shreve (2004). Recently, in a general market setting, Kallsen and Muhle-Karbe
(2017) formally derive leading-order optimal trading policies. Melnyk et al. (2019) show that the
leading order for small transaction costs is the same for agents with additive utilities and agents
with recursive utilities. For a general utility, Soner and Touzi (2013), Possamaï et al. (2015),
and Altarovivi et al. (2015) apply homogenization and the viscosity solution technique to get
rigorous expansions in multi-asset case with proportional transaction costs and fixed transaction
costs, respectively. Melnyk and Seifried (2018) consider a long-term investment problem in an
incomplete market for both proportional transaction costs and Morton-Pliska costs. In contrast
to this strand of literature, we conduct asymptotic analysis with small correlations instead of
small transaction costs.

There is very little literature on asymptotic analysis with small correlations. To the best of our
knowledge, Atkinson and Ingpochai (2006) may be the only one in which a perturbation method
is used to examine a multiple-asset portfolio optimization problem with small correlations and
small proportional transaction costs. The differences between theirs and our paper lie in two
aspects: (a) They consider a life-time investment and consumption problem for a constant
relative risk aversion (CRRA) investor. In contrast, we consider a long-term investment for
a CARA investor and need to solve an eigenvalue problem as a result. (b) Their expansion
relies on small correlations and small transaction costs, while our expansion relies on small
correlations only. Thus, our expansion works even with large transaction costs; see Figure 4.

The rest of the paper is organized as follows. In the next section, we present the problem
formulation and our main theoretical results, including the existence and uniqueness of viscosity
solutions to the eigenvalue problem and an asymptotic expansion with small correlations. In
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Section 3, we conduct an extensive numerical analysis to demonstrate our expansion and
investigate the impact of correlation and transaction costs on the optimal trading strategy. The
proofs of Theorem 1 and Theorem 2 are presented in Section 4 in Section 5, respectively. A
heuristic derivation of the eigenvalue problem, together with some basic properties in the one
risky-asset case, is relegated to Appendix.

2. Problem Formulation and Main Results

2.1. Problem Formulation

We consider a financial market consisting of a risk-free asset with a constant interest rate r ≥ 0

and two correlated risky assets. The price dynamics of the i-th risky asset (i = 1, 2) is assumed
to follow a geometric Brownian motion, i.e.,

dP it /P
i
t = αidt+ σidW

i
t ,

where αi ∈ R and σi > 0 are the constant expected return rate and volatility of the i-th
risky asset, respectively, and W 1 and W 2 are two standard Brownian motions with a constant
correlation coefficient ρ ∈ (−1, 1). We further assume that trading in the risk-free asset incurs
no transaction costs, while there are proportional transaction costs for trading the risky assets.
To be more precise, let Lit and M i

t be respectively the cumulative purchase and sales (in dollars)
of the i-th risky asset. Then, during a time period [t, t + dt), a transfer of money from the
bank account to the i-th risky asset incurs purchasing costs λidLit. Similarly, there are selling
costs µidM i

t during the time period [t, t + dt). Here λi ≥ 0 and µi ∈ [0, 1) are the constant
proportions of transaction costs for purchasing and selling the i-th risky asset, respectively.
Therefore, given an initial allocation (x, y) = (x, y1, y2) ∈ R3 in risk-free and risky assets and a
trading strategy (L,M) = ({L1, L2}, {M1,M2}), the dollar amounts in the risk-free asset and
the two risky assets, denoted by Xt, Y 1

t , and Y 2
t , respectively, evolve according to

dXt = rXtdt−
2∑
i=1

(1 + λi)dL
i
t +

2∑
i=1

(1− µi)dM i
t , X0− = x,

dY i
t = Y i

t

(
αidt+ σidW

i
t

)
+ dLit − dM i

t , Y i
0− = yi for i = 1, 2.

(2.1)

Following Guasoni and Muhle-Karbe (2015), we consider a CARA utility investor (i.e., −e−νz

for z ∈ R with the absolute risk aversion ν > 0), who maximizes the long-term certainty
equivalent annuity1

sup
(L,M)∈C(x,y)

lim inf
T→∞

− 1

T
lnEx,y

[
exp

(
− ν
{
XT + `(YT )− (x+ y · 1)erT

})]
(2.2)

subject to (2.1), where 1 = (1, 1), `(y) is the liquidated wealth, namely,

`(y) =
2∑
i=1

`i(yi), `i(yi) =

{
(1− µi)yi if yi ≥ 0,

(1 + λi)yi if yi < 0,
(2.3)

and C(x, y) is the set of all admissible controls such that the above system of stochastic
differential equations (2.1) has a unique strong solution with the initial state (X0− , Y0−) = (x, y)

1 The formulation is similar to that given in Definition 2.2 of Guasoni and Muhle-Karbe (2015). As noted
in Guasoni and Muhle-Karbe (2015), when r > 0, the risky investment part grows linearly with the horizon
T , while the risk-free part grows exponentially at the risk-free rate. Hence, the long-term certainty equivalent
annuity defined in (2.2) can be interpreted as the linear growth part contributed by the risky investment; see the
subsequent discussion for the special case without transaction costs, i.e., the classic Merton (1969) problem.
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and that E
∫ T
0 |Yte

−rν(Xt+Yt)|2dt <∞ for all T > 0 to rule out doubling strategies. This is an
ergodic control problem.

Denote by z = νerT y the investment in risky assets adjusted by interest rate and risk aversion.
The ergodic control problem (2.2) turns out to be associated with the following eigenvalue
problem with the variational inequality form2

min {θ −A[u], B[u], S[u]} = 0 in R2, (2.4)

where the differential operators A, B, and S are defined, respectively, as

A[u] =
1

2

2∑
i=1

2∑
j=1

σijzizj [uzizj − uziuzj ] +
2∑
i=1

(αi − r)ziuzi , (2.5)

B[u] = min{1 + λ1 − uz1 , 1 + λ2 − uz2}, (2.6)

S[u] = min{−1 + µ1 + uz1 , −1 + µ2 + uz2}, (2.7)

and

Σ = (σij)2×2 =

(
σ21 ρσ1σ2

ρσ1σ2 σ22

)
. (2.8)

In (2.4), the eigenvalue θ relates to the long-term certainty equivalent annuity, and the eigen-
function u characterizes the optimal policy.

Before proceeding, let us recall the classic results in Merton (1969) in the absence of
transaction costs, which is very helpful to understand our further analysis. It is well-known that
for a finite horizon investment with exponential utility, Merton’s solution has an explicit form

V (x, y, t;T ) = − exp
(
− ν(x+ y · 1)er(T−t) − 1

2
(α− r)trΣ−1(α− r)(T − t)

)
,

and the corresponding optimal allocation in risky assets is given by
Σ−1(α− r)

νer(T−t)
,

where α = (α1, α2)
tr, r = (r, r)tr, Σ is as given by (2.8), and M tr stands for the transpose

of a matrix M . By removing the exponential growth term ν(x+ y · 1)er(T−t), the long-term
certainty equivalent annuity contributed by risky investment is given by

θ =
1

2
(α− r)trΣ−1(α− r). (2.9)

We call

π = Σ−1(α− r) (2.10)

the Merton’s strategy (deflated by risk aversion and interest rate) for the long-term problem
(2.2). Interestingly, one can easily check3 that θ is nothing but the portfolio’s long-term excess
growth rate (i.e., the long-term growth rate nets of interest rate)4, i.e.,

θ = sup
π

lim inf
T→∞

1

T
E[ln(XT + YT )]− r.

Hence, we may also interpret θ as the long-term excess growth rate in the presence of proportional
transaction costs.
2 See Appendix A for a heuristic derivation.
3 See, e.g., Melnyk and Seifried (2018).
4 It is worth pointing out that this coincidence between θ and the long-term excess growth rate holds for the
exponential utility and usually fails for a general utility function. In addition, the formulation of long-term
growth rate implies a no-bankruptcy assumption that XT + YT > 0, which is not required in (2.2).
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2.2. Main Results

First, we prove the existence and uniqueness of viscosity solutions to the eigenvalue problem
(2.4) and characterize the resulting optimal trading strategy.

Theorem 1. Assume that r, ρ, λi, µi, αi, and σi satisfy the following conditions:

r ≥ 0, |ρ| ≤ 1, λi ≥ 0, µi ∈ [0, 1), λi + µi > 0, αi 6= r, σi > 0 (2.11)

for i = 1, 2. Let `(·) be as defined in (2.3). Then the followings hold:

(i) Problem (2.4) has a unique viscosity solution (θ, u) with the growth condition
lim|z|→∞ u(z)/`(z) = 1. Moreover, 0 ≤ θ ≤ θ, u is concave, and ziuzi ∈ C(R).

(ii) There are bounded functions l±i : R 7→ R and intervals [b±i , s
±
i ] satisfying

(b+1 , l
+
2 (b+1 )) = (l−1 (s−2 ), s−2 ), (l+1 (s+2 ), s+2 ) = (s+1 , l

+
2 (s+1 )),

(l−1 (b−2 ), b−2 ) = (b−1 , l
−
2 (b−1 )), (s−1 , l2(s

−
1 )) = (l+1 (b+2 ), b+2 ),

such that the whole region R2 is split into the following eight trading regions
SS = [s+1 ,∞)× [s+2 ,∞), SN = {(z1, z2) | z2 ∈ (b+2 , s

+
2 ), z1 > l

+
1 (z2)},

SB = [s−1 ,∞)× (−∞, b+2 ], NB = {(z1, z2) | z1 ∈ (b−1 , s
−
1 ), z2 6 l

−
2 (z1)},

BB = (−∞, b−1 ]× (−∞, b−2 ], BN = {(z1, z2) | z2 ∈ (b−2 , s
−
2 ), z1 6 l

−
1 (z2)},

BS = (−∞, b+1 ]× [s−2 ,∞), NS = {(z1, z2) | z1 ∈ (b+1 , s
+
1 ), z2 > l

+
2 (z1)},

(2.12)

and one no-transaction region

NT = {(z1, z2) | l−1 (z2) < z1 < l+1 (z2), l
−
2 (z1) < z2 < l+2 (z1)}. (2.13)

Moreover, the boundary of each corner region SS, SB, BS, and BB consists of one
vertical and one horizontal half-line, whereas the boundary of each of SN, NS, BN, and
NB consists of two parallel either vertical or horizontal half-lines and a curve in between
connecting the endpoints of the two half-lines.

The proof of Theorem 1 is deferred to Section 4. The uniqueness follows from a comparison
principle (i.e., Lemma 4.1), whose proof is inspired by Hynd (2012) and Possamaï et al. (2015),
and one of key steps is to introduce a suitable transformation such that the gradient constraint
in (2.4) is transferred to a new one restricted in a closed and convex set including the origin.
Regarding the existence, we consider an auxiliary problem (4.7), as is commonly used in ergodic
control (see, e.g., Borkar (2006)). It is worth pointing out that to prove the existence, the
existing literature (e.g., Hynd (2012); Possamaï et al. (2015)) typically adopts the standard
Perron’s argument by explicitly constructing appropriate sub and super solutions of problem
(4.7). In contrast, we use the method introduced in Chen and Dai (2013) by first considering a
related investment and consumption problem with a finite horizon and then sending the horizon
to infinity. An advantage of this method is that many nice properties such as the concavity of
the value function for the finite horizon problem are retained for the infinite horizon problem.
Using the concavity and the growth condition, we can directly apply the argument in Chen and
Dai (2013) to characterize the trading and no-transaction regions.

Remark 2.1. Note that if (θ, u) is a solution of (2.4), then (θ, u + C) is also a solution of
(2.4) for any constant C. However, this non-uniqueness of eigenfunctions has no impact on the
eigenvalue. Therefore, the uniqueness of problem (2.4) means that all such eigenfunctions are
considered identical.
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Part (ii) of the above theorem indicates that the optimal trading policy is determined by
the boundary of the no-transaction region, as depicted in Figure 1. In this paper, we shall
further derive an asymptotic expansion with a small correlation ρ for the boundary of the
no-transaction region as well as for the long-term excess growth rate θ.

To obtain the asymptotic expansion in an explicit form, we introduce new variables ξ = (ξ1, ξ2)

and function U(ξ) by

ξi = ln |zi|, U(ξ) = e−u(z)−
∑
i βiξi ,

where (β1, β2) is the root of
2∑
j=1

σijβj = r +
σii
2
− αi ∀ i = 1, 2. (2.14)

In a compact form, β = Σ−1(r− α+ 1
2σd) with σd = (σ11, σ22)

tr.
Thanks to Theorem 1, the variational inequality (2.4) for (θ, u) can be transformed into the

following free-boundary problem for (Θ, U) coupled with the unknown no-transaction region
NTξ and the unknown optimal trading boundaries Γij such that

−σ21Uξ1ξ1 − σ22Uξ2ξ2 = ΘU + 2ρσ1σ2Uξ1ξ2 in NTξ,

Uξi + (βi + kijzi)U = 0 on Γij ,

Uξiξi + [kijzi − (βi + kijzi)
2]U = 0 on Γij ,

(2.15)

where kij are defined as

ki1 = 1 + λi, ki2 = 1− µi. (2.16)

In addition, θ and Θ are related by the equation

θ =
1

2
Θ +

1

2

2∑
i=1

2∑
j=1

σijβiβj . (2.17)

And NTξ has a similar structure of NT stated in (2.13), i.e.,

NTξ = {(ξ1, ξ2) | l11(ξ2) < ξ1 < l12(ξ2), l21(ξ1) < ξ2 < l22(ξ1)}.

where lij is the transform of l±i in terms of the new variable ξ.
Note that β = (β1, β2) defined in (2.14) depends on ρ and can be expanded in the following

form:

β = β0 + ρβ̂ +O(ρ2), with β0 =

( r−α1

σ2
1

+ 1
2

r−α1

σ2
1

+ 1
2

)
, β̂ = − 1

σ1σ2

(
r − α2 + 1

2σ
2
2

r − α1 + 1
2σ

2
1

)
. (2.18)

So, based on the above notations and transformation, we seek the following formal asymptotic
expansions in terms of small correlation ρ for (i) the long-term excess growth rate Θ, (ii) the
optimal trading boundaries lij , and (iii) the eigenfunction U :

Θ = Θ0 + ρΘ̂ +O(ρ2), (2.19)

lij(ξ̆i) = bij + ρ l̂ij(ξ̆j) +O(ρ2), with ξ̆1 := ξ2, ξ̆2 := ξ1, (2.20)

U(ξ1, ξ2) = U0(ξ1, ξ2) + ρ Û(ξ1, ξ2) +O(ρ2), (2.21)

where {Θ0, Θ̂, bij} and {l̂ij , U0, Û} are respectively constants and functions given explicitly by
the following theorem.
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Theorem 2. Assume that r, ρ, λi, µi, αi, and σi satisfy condition (2.11). Let kij for i, j = 1, 2,
β0, and β̂ be defined by (2.16), (2.18), respectively. Then the formal asymptotic expansions
proposed in (2.19)-(2.21) have an explicit form:

(i) Regarding the zeroth-order terms,

Θ0 = σ21Θ1 + σ22Θ2, (2.22)

bij = ln
∣∣∣γij − β0i

kij

∣∣∣, (2.23)

U0(ξ1, ξ2) = U1(ξ1)U2(ξ2), (2.24)

where Θi is a solution of the algebraic equation (5.7), γij = 1
2 + (−1)j

2

√
1− 4β0i − 4Θi,

and

Ui(ξi) = cos

(√
Θi(ξi − bi1) + arccot

√
Θi

γi1

)
. (2.25)

(ii) Regarding the leading order terms,

Θ̂ =
2
∫ b12
b11

∫ b22
b21

U1U2[σ
2
1β̂1U

′
1U2 + σ22β̂2U1U

′
2 − σ1σ2U ′1U ′2]dξ1dξ2∫ b12

b11

∫ b22
b21

U2
1U

2
2dξ1dξ2

, (2.26)

l̂1j(ξ2) =
∞∑
q=0

ψ2q(ξ2)

U2(ξ2)

∞∑
p=1

cpqΘ1p
ψ1p(b1j)

H1j
, l̂′1j(b2j) = 0, (2.27)

l̂2j(ξ1) =
∞∑
p=0

ψ1p(ξ1)

U1(ξ1)

∞∑
q=1

cpqΘ2q
ψ2q(b2j)

H2j
, l̂′2j(b1j) = 0, (2.28)

Û(ξ1, ξ2) =
∞∑
p=0

∞∑
q=0

cpqψ1p(ξ1)ψ2q(ξ2)−
2∑
i=1

β̂iξi, (2.29)

where Hij = [γij − β0i ][1 − 2γij ]Ui(bij), cpq is given by (5.11), Θip is the root of the
algebraic equation (5.10), and ψip is given explicitly by

ψip(ξi) = cos

(√
Θi + Θip(ξi − bi1) + arccot

√
Θi + Θip

γi1

)
. (2.30)

Remark 2.2. (i) Here we use the convention that if Θ < 0, then
√

Θ = i
√
−Θ. Also,

cos(ix) = cosh(x), cot(ix) = −i cothx, arccot(−i cothx) = ix for x ∈ R.

(ii) From Theorem 1, the boundary of each corner region SS, SB, BS, and BB consists of
one vertical and one horizontal half-line. Thus, the fact that l̂′ij(bij) = 0 implies that the
sell and buy boundaries of each asset are C1 according to the leading order expansion.
Graphically, the four trading boundaries are perpendicular to each other at every corner;
see Figure 1.

(iii) In fact, {Θip, ψip}∞p=0 are all eigenpairs of the following eigenvalue problem
−ψ′′ip −Θiψip = Θipψip in [bi1, bi2],

ψ′ip(bij) + γijψip(bij) = 0, j = 1, 2,∫ bi2
bi1

ψ2
ip(x)dx = 1.

(2.31)
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(iv) The semi-closed form expansions relies on the linear structure of equation (2.15). In
particular, if we “ignore” the dependence of β on ρ and treat β as an exogenous parameter,
we can obtain a modified semi-closed form expansion by simply setting β0 = β and β̂ = 0 in
the original expansion. As the modified expansion essentially comes from an approximation
to the cross derivative term 2ρσ1σ2Ux1x2 only, it should be more accurate than the original
one, which is demonstrated by our numerical experiments (Figure 2). A detailed algorithm
is presented in Section 3.2.

Due to the heavy use of notations, we summarize the most important notations in Table 1
for comparison and later reference:

Table 1. Key Notations

Long-Term Excess
Growth Rate

Optimal Trading
Boundaries

Eigenfunction

For Merton θ π NA

For the original variables z θ l±i u

For the new variables ξ Θ lij U

For the zeros order terms Θ0 bij U0

For the leading order terms Θ̂ l̂ij Û

Before giving the proof of the main results, we apply our formal asymptotic expansions and
conduct an extensive numerical analysis.

3. Numerical Analysis

To test our asymptotic expansion, we first introduce the following finite difference method
(FDM) to obtain a benchmark solution since a closed-form solution is absent.

3.1. Finite Difference Method

We use the penalty method presented in Dai and Zhong (2010) to solve the variational inequality
(2.4) with an implicit finite difference scheme.5 More precisely, we first consider the following
approximation problem with a linear operator L̃:

min
{
θ̃ − L̃ũ− 1

2
σ21[ũ

(n)
ξ1

]2 − 1

2
σ22[ũ

(n)
ξ2

]2 − ρσ1σ2ũ(n)ξ1
ũ
(n)
ξ2
, B̃[ũ], S̃[ũ]

}
= 0,

5 Different from the policy iteration method used in Possamaï et al. (2015) and Altarovici et al. (2017), we first
linearize the differential operator A in the variational inequality (2.4) by the Newton method, and then apply
the non-smooth Newton method to handle the penalty approximation to the variational inequality.
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where ξi = ln |zi|, (θ̃, ũ) is the unknown pair, and (θ̃(n), ũ(n)) is the (last) n-th iteration solution
pair. Operators L̃, B̃, and S̃ are defined, respectively, by

L̃ũ =
1

2
σ21ũξ1ξ1 + ρσ1σ2ũξ1ξ2 +

1

2
σ22ũξ2ξ2 +

(
α1 − r −

1

2
σ21 − ρσ1σ2ũ

(n)
ξ2
− σ21ũ

(n)
ξ1

)
ũξ1

+
(
α2 − r −

1

2
σ22 − ρσ1σ2u

(n)
ξ1
− σ22u

(n)
ξ2

)
uξ2 ,

B̃[ũ] = min
{

(1 + λ1)z1 − ũξ1 , (1 + λ2)z2 − ũξ2
}
,

S̃[ũ] = min
{
− (1− µ1)z1 + ũξ1 , −(1− µ2)z2 + ũξ2

}
.

Note that, as mentioned in Remark 2.1, the eigenfunction u of the problem (2.4) is not unique.
So, we will impose an artificial condition later.

Next, for a given parameter set, we restrict attention to a suitable bounded domain Dξ =

(ξ
1
, ξ̄1)× (ξ

2
, ξ̄2) ⊂ R2 such that Dξ contains the no-transaction region NTξ. The numerical

algorithm can be described as follows:

Step 1. Given n-th iteration result (θ̃(n), ũ(n)) with an initial guess (e.g., (θ̃(0), ũ(0)) = (θ, `)),
solve the following linear problem for (θ̃, ũ) in the domain Dξ,

0 = θ̃ − L̃ũ− 1

2
σ21[ũ

(n)
ξ1

]2 − 1

2
σ22[ũ

(n)
ξ2

]2 − ρσ1σ2ũ(n)ξ1
ũ
(n)
ξ2

+P ×
2∑
i=1

1{(1+λi)zi−ũ(n)ξi
<0}

(
(1 + λi)zi − ũξi

)
+P ×

2∑
i=1

1{ũ(n)ξi
−(1−µi)zi<0}

(
ũξi − (1− µi)zi

)
,

coupled with boundary conditions: u(ξ
1
, ξ

2
) = 1, and

ũξ1(ξ
1
, ξ2) = (1 + λ1)z1, ũξ2(ξ1, ξ2) = (1 + λ2)z2,

ũξ1(ξ̄1, ξ2) = (1− µ1)z̄1, ũξ2(ξ1, ξ̄2) = (1− µ2)z̄2.

Here 1{·} is an indicator function, and P is a big positive constant (e.g., P = 105) that
is known as the penalty parameter.

Step 2. Calculate the relative error

RE =
||(θ̃, ũ)− (θ̃(n), ũ(n))||
||(θ̃(n), ũ(n))||

.

If the relative error RE < ε, where ε is a given small constant (e.g., ε = 10−12), then
set (θ, u) = (θ̃, ũ) and stop; Otherwise set (θ̃(n+1), ũ(n+1)) = (θ̃, ũ) and go to step 1.

In our numerical experiment, we regard the solution with the mesh size of 800× 800 as the
benchmark; see the dotted line in Figure 1. The basic parameter values are summarized in
Table 2. That is, the interest rate is 3% per year. For risky asset one, the expected return rate
is 10% and the volatility is 20%. For risky asset two, the expected return rate and volatility
are 12% and 25%, respectively. Finally, the proportion of transaction cost of each stock is set
to be 1% for both selling and buying. This computation is relatively costly, and it takes about
15 minutes to get a solution by a normal laptop.
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Table 2. Basic Parameters

Risk-free Rate Risky Asset One Risky Asset Two

Notation r α1 σ1 λ1 µ1 α2 σ2 λ2 µ2
Value (%) 3 10 20 1 1 12 25 1 1

3.2. Asymptotic Method

Thanks to Theorem 2, one can directly apply the expansion. Note that in our formal expansion,
the leading order terms are expressed in a series form. By a rule of thumb, we take the first 10
terms in our numerical algorithm, which is described below:

Step 1. Solve the algebraic equation (5.7) to obtain Θi;
Step 2. Use Θi to get bij and Ui from (2.23) and (2.25), respectively;
Step 3. Solve for Θ̂ by the integration formula (2.26);
Step 4. For p = 1, 2, · · · , 10, solve the algebraic equation (5.10) to obtain Θip, and then calculate

eigenfunction ψip by (2.30);
Step 5. For p, q = 0, 1, 2, · · · , 10, solve for coefficients cpq, trading boundaries l̂ij , and eigenfunc-

tion Û by (5.11), (2.27), (2.28), and (2.29), respectively;
Step 6. Calculate the long-term growth rate Θ = σ21Θ1 + σ22Θ2 + ρΘ̂ and the optimal trading

boundary lij = bij + ρ l̂ij ;
Step 7. Finally, calculate the long-term excess growth rate by (2.17), i.e., θ = 1

2Θ +
1
2

∑2
i=1

∑2
j=1 σijβiβj , and the optimal trading boundary l±i is derived from lij by

a change of variable ξi = ln |zi|.
As discussed in Remark 2.2 (iv), we can obtain a modified expansion by simply setting

β0 = β and β̂ = 0 in the above algorithm. It turns out that this modified expansion not
only has a more compact form as the terms related to β̂ disappear, but also performs more
accurately even for a relatively large correlation as explained in Remark 2.2 (iv). Figure 2 gives
a comparison of the two expansions. When correlation is relatively small (ρ = 0.01, left panel),
the no-transaction regions generated by both the original expansion (solid blue line) and the
modified expansion (solid gray line) are very close to the benchmark (dotted red line). When
correlation is relatively large (ρ = 0.1, right panel), the no-transaction region generated by the
original expansion (solid blue line) deviates from the benchmark (dotted red line) in a notable
size. However, the modified expansion (solid gray line) still works very well. Hence, we will use
the modified expansion in subsequent numerical analysis.

Since our expansion admits an explicit form, it is obvious that our asymptotic method is
much more efficient than FDM. In fact, for a normal laptop, it costs several seconds to obtain a
solution by our asymptotic method. By contrast, the FDM usually takes about 15 minutes to
get a solution and may be unstable when transaction costs are tiny.

3.3. Optimal Trading Boundaries

Let us consider the optimal trading boundaries. Figures 1, 3, and 4 illustrate some numerical
experiments on optimal trading boundaries. More specifically, in each plot, the thick black
(resp. blue) dot is the Merton’s strategy in the absence of transaction costs but with a non-zero
(resp. zero) correlation; The blue dashed rectangle is the uncorrelated case (i.e., ρ = 0) but
with transaction costs; The dotted and solid lines are the optimal trading boundaries obtained
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Figure 2. Comparison between Original Expansion and Modified Expansion. In
each plot, the thick black dot is the Merton’s strategy in the absence of transaction costs
but with a non-zero correlation. Default parameters are given by Table 2. Left Panel: When
correlation is relatively small ρ = 0.01, the no-transaction regions obtained by both the
original expansion (solid blue line) and the modified expansion (solid gray line) are close to
the benchmark (dotted red line). Right Panel: When correlation is relatively large ρ = 0.1, the
no-transaction region by the original expansion (solid blue line) deviates from the benchmark
(dotted red line) in a notable size. However, the modified expansion method (solid gray line)
still works very well.
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Figure 3. The No-transaction Regions with Different Correlations (Left: ρ = −0.1,
Right: ρ = −0.3). In each plot, the thick black (resp. blue) dot is the Merton’s strategy in
the absence of transaction costs but with a non-zero (resp. zero) correlation; The blue dashed
rectangle is the uncorrelated case (i.e., ρ = 0) but with transaction costs; The red dotted
lines and the black solid lines correspond to the benchmark and the asymptotic expansion,
respectively, in the presence of both correlation and transaction costs. Other parameters are
given in Table 2.

by the FDM and the asymptotic expansion, respectively, in the presence of both correlation and
transaction costs. Default parameters are summarized in Table 2. As you can see, for |ρ| = 0.1

(see left panels in both Figures 1 and 3), our asymptotic expansion has an impressive accuracy
compared with the benchmark result by FDM. For an even larger correlation |ρ| = 0.3 (see right
panels in both Figure 1 and 3), our asymptotic expansion also provides a good approximation.

Moreover, since our expansion is for a small correlation ρ and does not rely on the assumption
of small transaction costs, they should work equally well for different levels of transaction costs
provided that the correlation is relatively small. Figure 4 compares our expansion (black solid
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Figure 4. No-transaction Regions for Large Transaction Costs (λi = µi = 10%).
In each plot, the thick black (resp. blue) dot is the Merton’s strategy in the absence of
transaction costs but with a non-zero (resp. zero) correlation; The blue dashed rectangle is
the uncorrelated case ( i.e., ρ = 0) but with transaction costs; The red dotted lines and black
solid lines correspond to the benchmark and our expansion, respectively, in the presence of
both correlation and transaction costs. Other parameters are summarized in Table 2.

lines) with the FDM (red dotted lines) for a large transaction cost level (i.e., µi = λi = 10% for
i = 1, 2). The left panel shows that, as with small transaction costs, our expansion performs
impressively well when the correlation level is 0.1. Even for a much larger correlation, say 0.3,
the right panel of Figure 4 indicates that our expansion still provides a good approximation.
More interestingly, by comparing the right panels in Figures 1 and 4, we find that facing a large
correlation, the trading boundaries (black solid lines) with a large transaction cost match the
benchmark (red dotted lines) better than the case with a small transaction cost. This suggests
that our modified asymptotic expansion method can be potentially applied to investments with
very illiquid assets such as housing, art products, and so on.

Next, we turn to the impact of correlation on the optimal trading boundaries. Compared to
the uncorrelated case, the no-transaction region is no longer a rectangle but a quadrangle with
curved boundaries being orthogonal to each other at four corners. In the presence of correlation,
the two stocks have substitution effects each other, which leads the rectangle to be a quadrangle.
However, the boundaries are perpendicular to each other at the corner, as verified by the fact
that l̂′ij(bij) = 0 for the leading order expansion. From Theorem 1, the boundary of each corner
region SS, SB, BS, and BB consists of one vertical and one horizontal half-line. Thus, this
orthogonal property at four corners implies that the sell and buy boundaries of each asset are
C1 for the leading order expansion.

Figures 1 and 3 further show two interesting features: (a) The no-transaction regions shift
along the 45-degree line in the two-asset plane upward and downward for negative correlations
and positive correlations, respectively. (b) The slopes of optimal boundaries tend to be positive
(negative) for negative (positive) correlations. These can be interpreted from the diversification
effect. Indeed, a more negative correlation implies a bigger diversification benefit, thus, investors
should invest more in risky assets. This leads to the shift of the no-transaction region upward
along the 45-degree line in the two-asset plane. Meanwhile, when the holdings in one risky asset
increase, investors should allocate a larger position in the other risky asset for hedging purposes
since they are negatively correlated. Hence, the slopes of optimal boundaries are positive in the
case of negative correlation. Similar results can be obtained in the case of positive correlation.
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Finally, correlations seem to have no notable impact on the width of the no-transaction region
that is significantly affected by transaction costs.

3.4. Long-Term Excess Growth Rate
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Figure 5. Long-term Excess Growth Rate. In each plot, the red dashed, blue dotted,
and black solid lines represent the long-term excess growth rates obtained by Merton’s solution
(i.e., θ), the FDM (i.e., θf ), and our expansion (i.e., θa), respectively. Left Panel: Basic
parameter values are summarized in Table 2. Right Panel: Empirical parameter values from
Flavin and Yamashita (2002) for housing and stock markets. That is, the risk-free rate r = 1%;
for the relatively liquid risky asset (stock): α1 = 8%, σ1 = 24%, λ1 = µ1 = 0.1%; for the
illiquid risky asset (house) α2 = 6%, σ2 = 14%, λ2 = µ2 = 3%.

In this subsection, we investigate the eigenvalue θ, which stands for the portfolio’s optimal
long-term excess growth rate.

First, to measure the accuracy of our expansion, one way is to simply compare the long-term
excess growth rates obtained by the FDM and by our modified asymptotic expansion, which
are denoted by θf and θa, respectively. Figure 5 gives such a direct comparison. In each
plot, the red dashed, blue dotted, and black solid lines represent the long-term excess growth
rates obtained by Merton’s solution (i.e., θ), the FDM (i.e., θf ), and our expansion (i.e., θa),
respectively. The left panel shows the results with our basic parameter values in Table 2, while
the right panel present the results for the parameter values reported in Flavin and Yamashita
(2002) studying the housing and stock markets.

For both two sets of parameter values, we can see that the long-term excess growth rates
obtained by our expansion (black solid line) and by the FDM (blue dotted line) are pretty
close even for a large correlation |ρ| = 0.3.6 Of course, all these long-term excess growth rates
are bounded from above by that in Merton’s economy (red dashed line). In addition, there is
an interesting observation that the long-term excess growth rate obtained by our expansion is
always less than that obtained by the FDM, which implies that the second order term in our
expansion (i.e., the term O(ρ2)) may contribute positively to the long-term investment. The
difference tends to be large as the magnitude of correlation increases but in a non-symmetric
way. That is, for the same magnitude of correlation, the difference with a positive correlation is
less than that with a negative correlation. This suggests that our expansion performs better
in the case of a positive correlation. Moreover, as the correlation increases from negative to

6 In fact, we find that the difference is typically less than 0.3% for |ρ| ≤ 0.3.
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positive, the long-term excess growth rate is monotonically decreasing for both cases with and
without transaction costs. This is because the effect of diversification becomes stronger as the
correlation tends to be −1.

Table 3. Comparison of Long-term Excess Growth Rates. The row with zero transac-
tion costs (i.e., µi = λi = 0%) displays the long-term excess growth rates of Merton’s solution
(i.e., θ) for different correlations. For other transaction costs ranging from 0.1% to 10%, each
has three rows of data: The upper and middle rows collect the long-term excess growth rates
calculated by the benchmark FDM (i.e., θf ) and our expansion (i.e., θa), respectively. The
lower row shows the implied growth rates that are associated with implementing the trading
strategy from our expansion (i.e., θ̃a). Other parameter values are documented in Table 2.

Costs Correlation ρ

µi = λi -0.3 -0.2 -0.1 0 0.1 0.2 0.3

0% 18.01% 15.76% 14.01% 12.61% 11.46% 10.51% 9.70% θ

0.1%
17.94% 15.70% 13.96% 12.56% 11.43% 10.47% 9.68% θf

17.66% 15.53% 13.85% 12.48% 11.34% 10.37% 9.53% θa

17.86% 15.64% 13.91% 12.52% 11.39% 10.44% 9.64% θ̃a

0.2%
17.83% 15.60% 13.87% 12.50% 11.36% 10.42% 9.62% θf

17.55% 15.44% 13.77% 12.42% 11.28% 10.32% 9.48% θa

17.76% 15.55% 13.83% 12.46% 11.33% 10.39% 9.58% θ̃a

0.3%
17.73% 15.52% 13.80% 12.43% 11.30% 10.36% 9.57% θf

17.46% 15.37% 13.71% 12.36% 11.23% 10.27% 9.44% θa

17.67% 15.47% 13.77% 12.40% 11.28% 10.34% 9.55% θ̃a

0.4%
17.64% 15.44% 13.73% 12.37% 11.25% 10.32% 9.53% θf

17.38% 15.30% 13.65% 12.31% 11.19% 10.23% 9.41% θa

17.59% 15.40% 13.70% 12.34% 11.23% 10.30% 9.51% θ̃a

0.5%
17.56% 15.37% 13.67% 12.32% 11.20% 10.28% 9.49% θf

17.31% 15.24% 13.60% 12.26% 11.15% 10.20% 9.37% θa

17.51% 15.34% 13.64% 12.29% 11.18% 10.26% 9.47% θ̃a

1%
17.26% 15.12% 13.45% 12.12% 11.03% 10.12% 9.35% θf

17.02% 14.99% 13.38% 12.07% 10.98% 10.05% 9.24% θa

17.23% 15.09% 13.44% 12.11% 11.02% 10.11% 9.33% θ̃a

5%
15.89% 13.94% 12.43% 11.23% 10.24% 9.41% 8.71% θf

15.68% 13.83% 12.37% 11.19% 10.20% 9.36% 8.63% θa

15.87% 13.92% 12.41% 11.21% 10.23% 9.40% 8.69% θ̃a

10%
14.92% 13.10% 11.70% 10.57% 9.65% 8.88% 8.23% θf

14.70% 12.99% 11.63% 10.53% 9.61% 8.84% 8.17% θa

14.89% 13.08% 11.68% 10.56% 9.64% 8.87% 8.21% θ̃a

We now implement the trading boundaries obtained by the expansion to calculate the implied
long-term excess growth rate, denoted by θ̃a, which can be obtained by solving the equation
in the no-transaction region with the trading condition on the known boundaries from the
expansion. That is, (θ̃a, û) solves the following eigenvalue problem

θ̃a −A[ũ] = 0 in ÑTa,

ũzi = 1 + λi on l̃−i for i = 1, 2,

ũzi = 1− µi on l̃+i for i = 1, 2,

(3.1)
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where the operator A is defined in (2.5), l̃±i are optimal trading boundaries obtained from the
expansion, and the approximated no-transaction region is given by

ÑTa = {(z1, z2) | l̃−1 (z2) < z1 < l̃+1 (z2), l̃
−
2 (z1) < z2 < l̃+2 (z1)}.

One can use a finite difference scheme to numerically solve (3.1).
Table 3 provides a comparison of the long-term excess growth rates obtained by the three

different methods with different levels of correlations and transaction costs. The row with zero
transaction costs (i.e., µi = λi = 0%) displays the long-term excess growth rates of Merton’s
solution (i.e., θ) for different correlations. For other transaction cost levels ranging from 0.1%
to 10%, each has three rows of data in a group: The upper and middle rows collect the
long-term excess growth rates calculated by the benchmark FDM (i.e., θf ) and our expansion
(i.e., θa), respectively. The lower row shows the implied growth rates that are associated with
implementing the trading strategy from our expansion (i.e., θ̃a). Other parameter values are
given in Table 2. As one can see, for each fixed pair of correlation and transaction costs, both
θ̃a and θa are less than the benchmark θf , but the former is closer to the benchmark than the
latter. Overall, the absolute error is less than 0.3%. For each fixed transaction cost level (each
row in Table 3), consistent with the observation in Figure 5, negative correlation increases
the diversification effect and thus leads to a higher long-term excess growth rate. Meanwhile,
for each fixed correlation level (i.e., each column in Table 3), as transaction costs decrease,
the spread of long-term excess growth rates calculated by θa − θf or θ̃a − θf tends to increase.
However, this is by no means to say that our expansion is less accurate for small transaction
costs. In fact, a small transaction cost leads to a small no-transaction region. As a result, the
penalty method, which relies on the equation in the no-transaction region, becomes less stable.
In particular, we find that both the solvency domain and the penalty constant must be carefully
chosen to guarantee the convergence of the numerical scheme. By contrast, transaction costs
have no impact on our expansion due to its closed-form.

4. Proof of Theorem 1

To prove Theorem 1, we begin with the uniqueness of the eigenvalue problem (2.4). For later
use, we define the following closed convex subset of R2 and corresponding support function

E := {z ∈ R2 : −λi ≤ zi ≤ µi, i = 1, 2}, `E(z) = sup
x∈E

x · z for z ∈ R2. (4.1)

4.1. Uniqueness

The uniqueness follows immediately from the following comparison principle.

Lemma 4.1 (Comparison Principle). Suppose that u1 is a viscosity subsolution of (2.4) with
eigenvalue θ1 and that u2 is a viscosity supersolution of (2.4) with eigenvalue θ2. Assume
further that

lim sup
|z|→∞

u1(z)

`(z)
≤ 1 ≤ lim inf

|z|→∞

u2(z)

`(z)
.

Then, we have θ1 ≤ θ2.
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Proof. First, let C be a positive constant to be specified later, and define

θ̃1 = −θ2 + C, ũ1(z) = −u2(z) + z1 + z2, (4.2)

θ̃2 = −θ1 + C, ũ2(z) = −u1(z) + z1 + z2. (4.3)

Since u1 (resp. u2) is a viscosity subsolution (resp. supersolution) of (4.2) associated with the
eigenvalue θ1 (resp. θ2), one can easily check that ũ1 (resp. ũ2) is a viscosity subsolution (resp.
supersolution) of the following eigen problem associated with the eigenvalue θ̃1 (resp. θ̃2):

max

{
θ̃ − 1

2
Tr[ΣzD

2ũ]− g(Dũ)− f(z), B̃[ũ], S̃[ũ]

}
= 0 in R2, (4.4)

where Tr[·] is the trace operator,

Σz =

(
σ21z

2
1 ρσ1σ2z1z2

ρσ1σ2z1z2 σ22z
2
2

)
, (4.5)

g(Dũ) =
1

2

2∑
i

2∑
j

σijzizj [ũzi ũzj − ũzi − ũzj ] +
2∑
i

(αi − r)ziũzi ,

f(z) =
1

2

2∑
i

2∑
j

σijzizj −
2∑
i

(αi − r)zi + C,

B̃[ũ] = max{ũz1 − µ1, ũz2 − µ2},
S̃[ũ] = max{−ũz1 + λ1,−ũz2 + λ2}.

In addition, from the growth condition for u1 and u2, we have the following growth condition
for ũ1 and ũ2:

lim sup
|z|→∞

ũ1(z)

`E(z)
≤ 1 ≤ lim inf

|z|→∞

ũ2(z)

`E(z)
.

We choose C sufficiently large such that the convex function f is non-negative. Next, we will
apply a similar argument as in the proof of Theorem 3.1 in Possamaï et al. (2015) to obtain a
comparison principle for problem (4.2) with the above growth condition, i.e., θ̃1 ≤ θ̃2.

From the definition of the function `E(·) in (2.3), there exist L,L′ > 0 such that

L′|z| ≤ `E(z) ≤ L|z|. (4.6)

Next, fix some η > 0, 0 < τ < 1, and define, by de-doubling variables technique,

u(x, z) := τ ũ1(x)− ũ2(z)−
1

2η
|x− z|2 for (x, z) ∈ R2 × R2.

Since ũ1 is a viscosity subsolution of (2.4), we have Dũ1 ∈ E in the viscosity solution sense.
Then, for z 6= 0, we have

u(x, z) = τ
(
ũ1(x)− ũ1(z)

)
+
(
τ ũ1(z)− ũ2(z)

)
− 1

2η
|x− z|2

≤
(
τ ũ1(z)− ũ2(z)

)
+ τL|x− z| − 1

2η
|x− z|2

= `E(x)

(
τ
ũ1(z)

`E(x)
− ũ2(z)

`E(z)

)
+ τL|x− z| − 1

2η
|x− z|2.

By the growth conditions on u1 and u2 and condition (4.6), this implies that

lim
|(x,z)|→∞

u(x, z) = −∞.

17

Electronic copy available at: https://ssrn.com/abstract=3809057



Then, u(x, z) has a global maximizer (xτ,η, zτ,η). So, by the Crandall-Ishii Lemma (see Theorem
3.2 in Crandall et al. (1992)), we deduce that for any η > 0, there exist symmetric positive
matrices X and Y such that(

1

η
(xτ,η − zτ,η), X

)
∈ J̄2,+(τu1)(x

τ,η),(
1

η
(xτ,η − zτ,η), Y

)
∈ J̄2,−(u2)(z

τ,η),

and (
X 0
0 −Y

)
≤ A+ ηA2, with A =

1

η

(
I2 −I2
−I2 I2

)
,

which implies that X ≤ Y .
Since ũ1 is a viscosity subsolution, we have Dũ1 ∈ E in viscosity solution sense. Thus,

−λi ≤
1

τη
(xτ,ηi − z

τ,η
i ) ≤ µi, for i = 1, 2.

which in turn implies, by using τ ∈ (0, 1), that

−λi <
1

η
(xτ,ηi − z

τ,η
i ) < µi, for i = 1, 2.

Thanks to the above strictly inequality and the fact that ũ1 (resp. ũ2) is a viscosity subsolution
(resp. supersolution) of (2.4), we immediately have

θ̃1 −
1

2τ
Tr(ΣzX)− g

(
1

τη
(xτ,η − zτ,η)

)
− f(xτ,η) ≤ 0,

θ̃2 −
1

2
Tr(ΣzY )− g

(
1

η
(xτ,η − zτ,η)

)
− f(zτ,η) ≥ 0.

Consequently,

τ θ̃1 − θ̃2 ≤ 1

2
Tr(Σz(X − Y )) + τg

(
xτ,η − zτ,η

τη

)
− g

(
xτ,η − zτ,η

η

)
+ τf(xτ,η)− f(zτ,η)

≤ τg

(
xτ,η − zτ,η

τη

)
− g

(
xτ,η − zτ,η

η

)
+ f(xτ,η)− f(zτ,η).

By standard techniques from the theory of viscosity solutions, we then construct a zτ ∈ R2 and
a sequence (ηn)n≥0 converging to zero such that (xτ,ηn , zτ,ηn) −→ (zτ , zτ ) as n→∞. Passing
to the limit in the above inequality and using the fact g(0) = 0, we have τ θ̃1 − θ̃2 ≤ 0, leading
to θ̃1 ≤ θ̃2 due the arbitrariness of τ ∈ (0, 1).

Finally, θ1 ≤ θ2 follows immediately from the definition of θ̃i for i = 1, 2. �

4.2. Existence

Now let us turn to the existence of a solution of problem (2.4). Motivated by the method used
in ergodic control (see, e.g., Borkar (2006); Hynd (2012); Possamaï et al. (2015)), we consider
the following auxiliary problem, for any δ > 0,

min {δuδ −A[uδ], B[uδ], S[uδ]} = 0 in R2, (4.7)

where uδ is the unknown, and operators A, B, and S are the same as in the problem (2.4).

Lemma 4.2. Problem (4.7) has a unique viscosity solution with the growth condition
lim|z|→∞ uδ(z)/`(z) = 1. Moreover,

(i) uδ is Lipschitz continuous and concave;
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(ii) The following estimate holds:

0 ≤ uδ(·)− `(·) ≤
θδ
δ
, (4.8)

where θδ is given in (2.9) with αi − r replaced by αi − r − δ.

Proof. The uniqueness can be obtained from a comparison principle similar to Lemma 4.1,
whose proof is therefore omitted.

To prove the existence, different from the existing literature (e.g., Hynd (2012) and Possamaï
et al. (2015)) in which Perron’s argument by explicitly is used to construct appropriate sub and
super solutions of problem (4.7), we will use the method introduced in Chen and Dai (2013)
by first considering a related investment and consumption problem with finite horizon T <∞.
Then, the solution of (4.7) is obtained as the limit of the solution for the finite horizon problem
when T goes to infinity.

To be more precise, consider the following investment and consumption problem with finite
horizon T :

sup
(L,M,C)∈Cc(x,y)

Ex,yt
[
−
∫ T

t
κ e−νCsds− eν(XT+`(YT ))

]
,

where κ > 0 is a weight of consumption rate Ct, Ac(x, y) is the set of all admissible strategies,
and Xt and Yt satisfy dynamics (2.1) with r and αi being replaced by δ and αi− r, respectively.
Then, the lemma follows immediately from Theorems 2.1 and 2.2 in Chen and Dai (2013). �

Proof of Theorem 1 (i). It remains to prove the existence. Since uδ is Lipschitz and the estimate
(4.8) holds, we can use a diagonalization argument to obtain the following convergence: There
exists a sequence δk > 0 tending to 0 as k →∞, such that

lim
k→∞

δkuδk = θ ∈ R, and uδk −→ u ∈ C(R2) locally uniform as k →∞.

Then, the assertion that u is a concave viscosity solution of (2.4) associated with the eigenvalue
θ, follows directly from the definition of viscosity solutions by passing to the limit under local
uniform convergence. In addition, the uniqueness comes directly from the comparison principle.

Note that θδ → θ as δ ↘ 0, thus (4.8) implies that 0 ≤ θ ≤ θ. Finally, the regularity result
ziuzi ∈ C(R2) follows from Theorem 2.3 in Chen and Dai (2013). This completes the proof of
Theorem 1 (i). �

4.3. No-Transaction Region

Our existence proof suggests that u is Lipschitz concave and satisfies the growth condition.
This allows us to follow a similar argument as in Chen and Dai (2013) to prove the rest part of
Theorem 1.

Proof of Theorem 1 (ii). Let us first decompose the operator A[u] as A[u] = 1
2Tr[ΣzD

2u]−f(z),
where Σz is defined in (4.5), and

f(z) =
1

2

2∑
i=1

2∑
j=1

σij(ziuzi − πi)(zjuzj − πj) + θ − θ

with (π1, π2) and θ being respectively the Merton’s optimal portfolio allocation and long-term
excess return rate given in (2.10) and (2.9), i.e.,

(π1, π2) = Σ−1(α− r), θ =
1

2
(α− r)trΣ−1(α− r).
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Since ziuzi is continuous from Theorem 1 (i), f is continuous.
In addition, as u is Lipschitz concave and satisfies the growth condition lim|z|→∞ u(z)/`(z) = 1,

we can apply the same argument as in the proof of Theorem 2.4 in Chen and Dai (2013) to
infer that there are bounded functions l±i : R 7→ R and intervals [b±i , s

±
i ] for i = 1, 2 such that

the characterizations in (2.12) and (2.13) hold. �

5. Proof of Theorem 2

In this section, we prove Theorem 2. We begin with the derivation of the formal expansion.
For convenience, we recall the problem (2.15) for U

−σ21Uξ1ξ1 − σ22Uξ2ξ2 = ΘU + 2ρσ1σ2Uξ1ξ2 in NTξ,

Uξi + (βi + kijzi)U = 0 on Γij ,

Uξiξi + [kijzi − (βi + kijzi)
2]U = 0 on Γij

where kij are defined in (2.16), and Θ := 2θ −
∑

ij σijβiβj is a constant being part of the
unknown, NTξ and Γij are the unknown no-transaction region and free boundary under new
variables having the shape described in (2.12) and (2.13).

Here we remark that the first boundary condition in (2.15) is derived from uzi = kij on Γij .
The second boundary condition in (2.15) is derived from uzizi = 0 and the following calculation
on Γij :

0 = −z2i uzizi = −zi(ziuzi)zi + ziui =
Uξiξi
U
−
U2
ξi

U2
−
Uξi
U
− βi

=
Uξiξi − [βi + kijzi]

2U + kijziU

U
.

Since (zi)ξi = zi, the second boundary condition in (2.15) can also be written as

[Uξi + (βi + zikij)U ]ξi = 0 on Γij . (5.1)

5.1. The Formal Expansion for Small ρ

Now we seek expansions in the form of (2.19)-(2.21). First, in NTξ, we have

0 = −σ21U0
ξ1ξ1 − σ

2
2U

0
ξ2ξ2 −Θ0U0

+ρ
{
− σ21Ûξ1ξ1 − σ22Ûξ2ξ2 −Θ0Û − Θ̂U0 − 2σ1σ2U

0
ξ1ξ2

}
+O(ρ2).

Second, the first set of boundary conditions gives the following:

0 = Uξi + (βi + kijzi)U
∣∣∣
ξi=bij+ρl̂ij+O(ρ2)

= [U0
ξi

+ (β0i + kijzi)U
0]
∣∣∣
ξi=bij

+ρ
{
l̂ij [U

0
ξi

+ (β0i + kijzi)U
0]ξi + [Ûξi + (β0i + kijzi)ζ + β̂iU

0]
}∣∣∣
ξi=bij

+O(ρ2)

by using the boundary condition for U0 and the identity (5.1).
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Third, the second set of boundary conditions can be written as

0 = [Uξi + (βi + kijzi)U ]ξi

∣∣∣
ξi=bij+ρl̂ij+o(ρ2)

= [U0
ξi

+ (β0i + kijzi)U
0]ξi

∣∣∣
ξi=bij

+ρ
{
l̂ij [U

0
ξi

+ (β0i + kijzi)U
0]ξiξi + [Ûξi + (β0i + kijzi)Û + β̂iU

0]ξi

}∣∣∣
ξi=bij

+O(ρ2).

Therefore, for the zeroth-order {Θ0, bij , U
0}, we have

−σ21U0
ξ1ξ1
− σ22U0

ξ2ξ2
= Θ0U0 in NT0

ξ = (b11, b12)× (b21, b22),

U0
ξi

+ (β0i + kijzi)U
0 = 0 on Γ0

ij = ∂NT0
ξ ∩ {ξi = bij},

[U0
ξi

+ (β0i + kijzi)U
0]ξi = 0 on Γ0

ij .

(5.2)

And, for the leading order {Θ̂, l̂ij , Û}, we have{
−σ21Ûξ1ξ1 − σ22Ûξ2ξ2 −Θ0Û = Θ̂U0 + 2σ1σ2U

0
ξ1ξ2

in NT0
ξ ,

Ûξi + (β0i + kijzi)Û + β̂iU
0 = 0 on Γ0

ij ,
(5.3)

and

l̂ij(ξ̆i) = −
[Ûξi + (β0i + kijzi)Û + β̂iU

0]ξi
[U0
ξi

+ (β0i + kijzi)U0]ξiξi

∣∣∣
ξi=bij

where ξ̆1 := ξ2, ξ̆2 := ξ1. (5.4)

5.2. The Zeroth Order

Note that the zeroth-order is equivalent to the case ρ = 0. The unique solution U = U0 of (5.2)
can be obtained by separation of variables:

U0(ξ) = U1(ξ1)U2(ξ2), Θ0 = σ21Θ1 + σ22Θ2,

where {Ui,Θi}, together with {bi1, bi2}, is the solution to the one-dimensional problem in terms
of the new variables (ξ1, ξ2).7

To simplify exposition, in the rest of this subsection, let us denote by

{U,Θ, b1, b2, k1, k2, β, ξ} = {Ui,Θi, bi1, bi2, ki1, ki2, βi, ξi} for either i = 1 or 2,

and

γj = β + kjaj for j = 1, 2.

Then the one-dimensional problem is to find (U,Θ, b1, b2, a1, a2) such that b1 ≤ b2 and that
−U ′′ = ΘU in (b1, b2),

U ′ + γjU = 0 at bj = ln |aj |, j = 1, 2,

U ′′ + [kjaj − (β + kjaj)
2]U = 0 at bj , j = 1, 2,

(5.5)

This is equivalent to finding (U,Θ, b1, b2) such that

−U ′′(ξ) = ΘU(ξ), U(ξ) 6= 0 ∀ ξ ∈ [b1, b2],

bj = ln
|γj−β|
kj

, U ′(bj) + γjU(bj) = 0, γ2j − γj + Θ + β = 0, j = 1, 2.

7 In Appendix B, we present some basic properties for the above one-dimensional eigenvalue problem. We will
use one of the properties in subsequent analysis. It is also worth pointing out that in the one-dimensional case,
Guasoni and Muhle-Karbe (2015) conduct an asymptotic analysis through shadow price.
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This implies that aj , bj , γj are determined by Θ 6 1/4− β. From (B.2) in Appendix B and the
requirement ln |a1| = b1 ≤ b2 = ln |a2|, we must have that either a2 < a1 < 0 or 0 < a1 < a2,
leading to the choice

γ1 =
1−
√

1− 4β − 4Θ

2
, γ2 =

1 +
√

1− 4β − 4Θ

2
,

aj =
γj − β
kj

=
1− 2β + (−1)j

√
1− 4β − 4Θ

2kj
=
m

kj
+ (−1)j

√
1− 4β − 4Θ

2kj
,

where m = 1/2 − β. Again, since either a2 < a1 < 0 or 0 < a1 < a2, a straightforward
calculation shows that Θ ≥ −β2. So, this implies that Θ ∈ (−β2, 1/4− β).

Next, note that

bj = ln
|γj − β|
kj

= ln
∣∣∣1− 2β + (−1)j

√
1− 4β − 4Θ

2kj

∣∣∣.
This gives

b2 − b1 = A+ ln
∣∣∣1− 2β +

√
1− 4β − 4Θ

1− 2β −
√

1− 4β − 4Θ

∣∣∣, (5.6)

where

A = ln
k1
k2

= ln
1 + λ

1− µ
.

Suppose Θ 6= 0. Up to a constant multiple, the solution is given by

U(ξ) = cos
(√

Θ[ξ − b1] + arccot

√
Θ

γ1

)
,

where the boundary condition U ′(b2) + γ2U(b2) = 0 gives

b2 − b1 =
1√
Θ

(
arccot

√
Θ

γ2
− arccot

√
Θ

γ1

)
.

Here we use the convention that if Θ < 0, then
√

Θ = i
√
−Θ. Also, for x ∈ R,

cos(ix) = cosh(x), cot(ix) = −i cothx, arccot(−i cothx) = ix.

In view of (5.6), for A > 0 and β 6= 1/2, we obtain a solution if and only if Θ ∈ (−β2, 1/4−β)

is a solution of

A = f(β,Θ), (5.7)

where

f(β,Θ) := ln
1− 2β −

√
1− 4β − 4Θ

1− 2β +
√

1− 4β − 4Θ

+
1√
Θ

(
arccot

2
√

Θ

1 +
√

1− 4β − 4Θ
− arccot

2
√

Θ

1−
√

1− 4β − 4Θ

)
.

To sum up, we have the following lemma:

Lemma 5.1. Assume that condition (2.11) holds. Then problem (5.2) has a unique solution
{Θ0, bij , U

0} having the forms of (2.22), (2.23), and (2.24) stated in Theorem 2.
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In addition, based on this separability, the expression for l̂ij in (5.4) can be simplified as
follows. First of all, since (zi)ξi = zi,

[Ûξi + (β0i + kijzi)Û + β̂iU
0]ξi

∣∣∣
ξi=bij

= Ûξiξi + (β0i + kijzi)Ûξi + kijziÛ + β̂iU
0
ξi

∣∣∣
ξi=bij

= Ûξiξi + (−[β0i + kijzi]
2 + kijzi )Û − 2(β0i + kijzi)β̂iU

0
∣∣∣
ξi=bij

= [Ûξiξi + ΘiÛ ]− 2γij β̂iU1U2

∣∣∣
ξi=bij

,

where we have used the fact that γij = β0i + kijzi is the roots of −γ2 + γ − β0i = Θi. Next,
using U0 = U1(ξ1)U2(ξ2) and (U0

i )ξiξi = −ΘiU
0
i we have

[U0
ξi

+ (β0i + kijzi)U
0]ξiξi

∣∣∣
ξi=bij

= U0
ξiξiξi

+ (β0i + kijzi)U
0
ξiξi

+ kijzi[2U
0
ξi

+ U0]
∣∣∣
ξi=bij

= −Θi[U
0
ξi

+ (β0i + kijzi)U
0] + kijzi[1− 2(β0i + kijzi)]U

0
∣∣∣
ξi=bij

= [γij − β0i ][1− 2γij ]U1U2|ξi=bij .

Hence, the second set of boundary conditions can be written as

l̂1j(ξ2) = −
Ûξ1ξ1(b1j , ξ2) + Θ1Û(b1j , ξ2)

H1j U2(ξ2)
+

2γ1j β̂1
(γ1j − β01)(1− 2γ1j)

∀ ξ2 ∈ [b21, b22],

l̂2j(ξ1) = −
Ûξ2ξ2(ξ1, b2j) + Θ2Û(ξ1, b2j)

H2j U1(ξ1)
+

2γ2j β̂2
(γ2j − β02)(1− 2γ2j)

∀ ξ1 ∈ [b11, b12],

where Hij are positive constants given by

Hij = (γij − β0i )(1− 2γij)Ui(bij), for i, j = 1, 2.

5.3. The Leading Order

In this subsection, we consider the problem (5.3) and (5.4) regarding the leading order terms
Θ̂, l̂ij , and Û . We have the following result.

Lemma 5.2. Assume condition (2.11) holds, then the problem (5.3) and (5.4) has a unique
solution {Θ̂, l̂ij , Û} having forms (2.26), (2.27), (2.28), and (2.29).

Proof. Recall that the first variation Û is the solution of the elliptic equation{
−σ21Ûξ1ξ1 − σ22Ûξ2ξ2 −Θ0Û = Θ̂U1U2 + 2σ1σ2U

′
1U
′
2 in NT0

ξ .

Ûξi + γijÛ = −β̂iU0 on Γ0
ij ,

(5.8)

where γij = β0i + kijzi.
To solve the above linear partial differential equation, we introduce φ(ξ) = Û(ξ) +

∑2
i=1 β̂iξi.

Then φ solves the following equation{
Lφ = Θ̂U1U2 + 2σ1σ2U

′
1U
′
2 − 2σ21β̂1U

′
1U2 − 2σ22β̂2U1U

′
2 in NT0

ξ .

φξi + γijφ = 0 on Γ0
ij ,

(5.9)

where L is a self-adjoint elliptic operator

L := −σ21∂ξ1ξ1 − σ22∂ξ2ξ2 −Θ0I.
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Note that U0 := U1U2 is a solution of the homogeneous equation, i.e., U0 is the principal
eigenfunction with a zero principal eigenvalue of the corresponding self-adjoint elliptic operator
L associated with the mixed boundary conditions. The solvability condition gives the constant

Θ̂ =
2
∫
NT0

ξ
U1U2[σ

2
1β̂1U

′
1U2 + σ22β̂2U1U

′
2 − σ1σ2U ′1U ′2]dξ∫

NT0
ξ
U2
1U

2
2dξ

.

Since the solution of the original problem is unique up to a constant multiple, we can fix the
multiple by requiring φ ⊥ U0, i.e.,

c00 :=

∫
NT0

ξ
φU1U2dξ√∫

NT0
ξ
U2
1U

2
2dξ

= 0.

The solution of (5.9) can be obtained by Fourier series. For this, denote by {Θip, ψip}∞p=0 for
i = 1, 2 all the eigenpairs of the eigenvalue problem (2.31) in Remark 2.2, i.e.,

−ψ′′ip −Θiψip = Θipψip in [bi1, bi2],

ψ′ip(bij) + γijψip(bij) = 0, j = 1, 2.∫ bi2
bi1

ψ2
ip(x)dx = 1.

In fact, {Θip, ψip}∞p=0 has an explicit form, where Θip is the root of the following algebraic
equation √

Θi + Θip(bi2 − bi1) = pπ + arccot

√
Θi + Θip

γi2
− arccot

√
Θi + Θip

γi1
, (5.10)

and ψip is given explicitly by

ψip(ξi) = cos
(√

Θi + Θip(ξi − bi1) + arccot

√
Θi + Θip

γi1

)
.

Now, having {Θip, ψip}∞p=0 at hand, solutions of the eigenvalue problem

Lψ̃ = θ̃ψ̃ with ψ̃ξi + γijψ̃ = 0,

are

θ̃pq := σ21Θ1p + σ22Θ2q, ψ̃pq := ψ1pψ2q, for p, q = 0, 1, · · · .

Note that ψi0 = Ui/‖Ui‖L2 and that Θi0 = 0. The solution of (5.9) thus can be written as

φ(ξ1, ξ2) =
∞∑
p=0

∞∑
q=0

cpqψ1p(ξ1)ψ2q(ξ2),

and the following calculation holds:

φξiξi(ξ1, ξ2) + Θiφ(ξ1, ξ2) = −
∞∑
p=0

∞∑
q=0

cpqΘipψ1p(ξ1)ψ2q(ξ2) for i = 1, 2.

Here the coefficients are given by c00 = 0 and (by using ψ1pψ2q ⊥ U1U2)

cpq =
2σ1σ2

∫ b12
b11

U ′1(ξ1)ψ1p(ξ1)dξ1
∫ b22
b21

U ′2(ξ2)ψ2q(ξ2)dξ2

σ21Θ1p + σ22Θ2q
for (p, q) 6= (0, 0). (5.11)

Consequently, we can obtain the solution of (5.8) by setting

Û(ξ) = φ(ξ)−
2∑
i=1

β̂iξi.
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A further calculation shows that

l̂1j(ξ2) = −
Ûξ1ξ1(b1j , ξ2) + Θ1Û(b1j , ξ2)

H1j U2(ξ2)
+

2γ1j β̂1
(γ1j − β01)(1− 2γ1j)

=
∞∑
q=0

ψ2q(ξ2)

U2(ξ2)

∞∑
p=1

cpqΘ1p
ψ1p(b1j)

H1j

for j = 1, 2 and ξ2 ∈ [b21, b22]. Similarly,

l̂2j(ξ1) = −
Ûξ2ξ2(ξ1, b2j) + Θ2Û(ξ1, b2j)

H2j U1(ξ1)
+

2γ2j β̂2
(γ2j − β02)(1− 2γ2j)

=

∞∑
p=0

ψ1p(ξ1)

U1(ξ1)

∞∑
q=1

cpqΘ2q
ψ2q(b2j)

H2j

for j = 1, 2 and ξ1 ∈ [b11, b12]. Note that at the corner point,

l̂′1j(ξ2)|ξ2=b2j =
∞∑
q=0

ψ′2qU2 − ψ2qU
′
2

U2
2

∣∣∣
ξ2=b2j

∞∑
p=1

cpqθ1p
ψ1p(b1j)

H1j

=

∞∑
q=0

[ψ′2q + γ2jψ2q]U2 − ψ2q[U
′
2 + γ2jU2]

U2
2

∣∣∣
ξ2=b2j

∞∑
p=1

cpqΘ1p
ψ1p(b1j)

H1j
= 0.

Similarly, l̂′2j(b1j) = 0. This completes the proof of the lemma. �

Proof of Theorem 2. Theorem 2 follows immediately from Lemmas 5.1 and 5.2. �

Appendix A. A Heuristic Derivation of (2.4)

In this appendix, we provide a heuristic derivation of the eigenvalue problem (2.4), which
corresponds to the ergodic control (2.2).

Following Guasoni and Muhle-Karbe (2015), we begin with the following finite horizon
problem

V (x, y, t;T ) = sup
(L,M)∈Ct(x,y)

Ex,yt
[
− exp

(
− ν[XT + `(YT )]

)]
(A.1)

subject to dynamics (2.1) with the initial value that (Xt− , Yt−) = (x, y) ∈ R×R2. Here Ct(x, y)

denotes all admissible strategies starting from the position (x, y) at time t, and Ex,yt is an
expectation operator conditional on (Xt− , Yt−) = (x, y).

Then by dynamic programming principle, V solves the following HJB equation

min
i∈{1,2}

min{−Vt −L V, (1 + λi)Vx − Vyi , −(1− µi)Vx + Vyi} = 0 in R3 × [0, T ) (A.2)

where the linear operator L is defined by

L V =
1

2

2∑
i=1

2∑
j=1

σijyiyjVyiyj +
∑
i

αiyiVyi + rxVx.

Motivated by the classic solution in Merton (1969), we introduce the following transformation

V (x, y, t;T ) = −e−νer(T−t)x−θ(T−t)−u(z,t;T ), (A.3)

where z = νer(T−t)y is the wealth invested in the risky assets adjusted by both risk-free rate and
risk aversion, and θ is chosen such that limT−t→∞ ut(z, t;T ) = 0. A straightforward calculation
leads to the HJB equation (2.4) by sending T − t to infinity.
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To establish a rigorous linkage between the eigenvalue problem (2.4) and the ergodic control
problem (2.2), one needs to prove either a verification theorem or a dynamic programming
principle. Guasoni and Muhle-Karbe (2015) prove the verification theorem for the single risky
asset case (or the case of multiple uncorrelated risky assets) for which an analytical solution is
available. For the correlated risky assets case, due to the absence of an analytical solution, the
proof of the verification theorem requires a certain regularity of the solution to (2.4). We leave
it for future study.

Appendix B. Basic Properties in the One-Dimensional Case of Problem (2.4)

The one-dimensional infinite horizon problem of (2.4) is to find an interval [a1, a2] ⊂ R, an
(eigenvalue) θ̃ ∈ R, and a function u ∈ C(R) ∩ C2(R \ {0}) such that

θ̃ − z2u′′ + (zu′)2 − 2mzu′ = 0 ∀z ∈ [a1, a2],

k2 6 u′(z) 6 k1 ∀ z ∈ (a1, a2),

u′(z)− k1 = 0 6 θ̃ + (zk1)
2 − 2mk1z, ∀ z < a1,

u′(z)− k2 = 0 6 θ̃ + (zk2)
2 − 2mk2z ∀ z > a2

(B.1)

where

m =
α− r
σ2

, k1 = 1 + λ ∈ [1,∞), k2 = 1− µ ∈ (0, 1].

The original eigenvalue θ relates θ̃ by θ = σ2

2 θ̃.
Notice first the following basic facts:

(1) If u is a solution, then for any constant C, u+C is also a solution. Hence, we normalize
it by assuming

u(0) = 0.

(2) There are two trivial cases:
(i) λ = 0 = µ: then up to an additive constant, the solution is given by

u(z) = z ∀ z ∈ R, a1 = a2 = m, θ̃ = m2.

(ii) m = 0: Then up to an additive constant, the solution is given by

a1 = 0, a2 = 0, θ̃ = 0, u(z) =

{
(1− µ)z if z > 0,
(1 + λ)z if z < 0.

(3) If 0 ∈ [a1, a2], then we must have θ̃ = 0 or equivalently θ = 0. From zu′′ = zu′2 − 2mu′

in (a1, a2) \ {0} and k2 6 u′ 6 k1 we conclude first that a1 = a2 = 0 and then m = 0.
Hence, we must have m 6= 0 and 0 6∈ [a1, a2]. Moreover, since θ ≥ 0, u is concave,
and u′ ≥ k2 > 0, the equation θ̃ − z2u′′ + (zu′)2 − 2mzu′ = 0 implies that mz > 0 for
z ∈ [a1, a2]. Thus, we have

m > 0 =⇒ a2 > a1 > 0, and m < 0 =⇒ a1 < a2 < 0. (B.2)

(4) The differential equation at ai and the differential inequality imply that a2iu
′′(ai) > 0.

On the other hand, u′(a1) = k1 is a global maximum and u′(a2) = k2 is a global
minimum of u′, so a2iu

′′(ai) = 0.
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