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Convex Incentives and Liquidity Premia

Abstract

We show that convexity in investors’ preferences can significantly amplify the effect of trans-

action costs on the liquidity premia of stocks. This result is derived from the dynamic

portfolio problem of fund managers who engage in risk-shifting to capture year-end bonuses,

but is robust to other sources of convexity such as loss aversion or status concerns. The

larger premia compensate primarily for the lower bonuses resulting from the suboptimal im-

plementation of risk-shifting strategies. Using data on actively-managed mutual funds, we

provide empirical support for the novel predictions of our model.
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“For actively managed funds, the people that make the ultimate investment decisions are
not the owners. If the people making the investment decisions obtain a high reward when
things go well and a limited penalty if they go badly they will be willing to pay more than the
discounted cash flow for an asset. This is the type of incentive scheme that many financial
institutions give to investment managers.”

Allen (2001)

1 Introduction

It is empirically recognized that liquidity is valuable to investors and that they demand a

return premium to compensate for transaction costs (e.g., Amihud and Mendelson (1986),

Eleswarapu (1997), Hasbrouck (2009)). However, few existing theories have been able to

corroborate such empirical findings. Constantinides (1986) first argued that, under constant

investment opportunities, trading costs significantly reduce the frequency and volume of

trading, but have surprisingly little impact on utility. Thus, the return that a marginal

investor is willing to exchange for zero trading costs (i.e., the liquidity premium) was found

to be an order of magnitude smaller than the transaction cost rate. To increase the magnitude

of liquidity premia, Jang, Koo, Liu, and Loewenstein (2007), Lynch and Tan (2011), and

Dai, Li, Liu, and Wang (2016) introduce time-variation in investment opportunities.

In this paper, we investigate the effect of investors’ convex incentives on the magnitude

of liquidity premia. This is motivated by the observation that convexities are ubiquitous in

managerial compensation, behavioural economics, and goal-reaching problems, and that they

can significantly affect the decision making process. We find that the interaction of convex

incentives with transaction costs significantly (and endogenously) amplifies the magnitude of

liquidity premia to levels comparable with empirical evidence. We establish this result both

theoretically and empirically, by focusing on the risk-shifting incentives derived from the

year-end bonus that are prevalent in the compensation contracts of mutual fund managers

(see Ma, Tang, and Gomez (2019) and Lee, Trzcinka, and Venkatesan (2019)). But we show

that this result is robust to other non-concave incentives from the behavioural economics

literature, such as those derived from loss aversion (Kahneman and Tversky (1979)) or status

concerns (Lee, Zapatero, and Giga (2018)).

The mutual fund industry provides an ideal setting to examine how convex incentives
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affect the magnitude of liquidity premia, for four main reasons. First, this industry has

grown rapidly in the last two decades.1 Hence, it is reasonable to assume that mutual fund

managers have become the marginal investors in many stocks.2 Second, the compensation

contracts of portfolio managers typically include a convex component in the form of a year-

end bonus (Ma, Tang, and Gomez (2019)).3 They reward good performance but do not

penalize bad performance, giving incentives to take excessive risks as implied by Allen (2001)

in the introductory quote. Moreover, these contracts are typically incomplete, giving fund

managers the residual control over the assets in their portfolios (Hart (2017)).4 Third,

mutual fund managers that are prone to engaging in excessive risk-taking also tend to hold

more illiquid stocks in their portfolios compared to other funds (Huang, Sialm, and Zhang

(2011)), suggesting that gambling activities induced by convex incentives are specially likely

to interact with stock trading costs. Fourth, data on mutual fund characteristics and portfolio

holdings is readily available, allowing us to directly test the empirical predictions of our

theoretical model.

To investigate the effect of convex incentives on liquidity premia, we introduce propor-

tional transaction costs in the model of Basak, Pavlova, and Shapiro (2007).5 The model

considers a risk-averse fund manager whose performance is measured relative to an external

benchmark. The manager can invest in a risk-free bond and a benchmark stock that are

1 According to the Investment Company Institute, the total net assets of US-registered investment com-
panies was $22.5 trillion at the end of 2017, compared to $13 trillion at the end of 2007, which represents
a 73% increase. The growth was even more dramatic one decade prior, with an increase of about 177% in
total net assets from a value of $4.7 trillion at the end of 1997.

2 For instance, Boguth and Simutin (2018) show that the tightness of leverage constraints in mutual
funds, as captured by their demand for high-beta stocks, is a priced risk factor in the cross-section of stock
returns. This is consistent with mutual funds being the marginal investors.

3 These types of convex incentives are also prevalent in the hedge fund industry. They arise from the
typical fee structure that includes a flat management fee plus a performance fee awarded when performance
is better than a hurdle rate or a high-water mark. These fee structures also induce excessive risk taking (Lan,
Wang, and Yang (2013)), and our argument should hold in this setting as well. We do not focus our analysis
on hedge funds because data on mutual funds it more readily available to test our model predictions, which
we do in Section 5.

4 In fact, fund managers have numerous ways to change the riskiness of their portfolios, such as switching
between equity and cash, or switching between low and high beta stocks, among others. This suggests that it
may be very difficult, if not impossible, to specify all the contingencies in their contracts to deter gambling,
which deems these contracts incomplete.

5 This is a non-trivial task, because the introduction of transaction costs renders the market incomplete,
in which case the martingale technique is no longer applicable.
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perfectly liquid, and she can also invest in an illiquid non-benchmark stock which is subject

to transaction costs and provides some unspanned risk relative to the benchmark stock. If

the manager is able to beat the benchmark by year-end, she is rewarded with a bonus from

her compensation contract. However, if she does poorly relative to the benchmark, there is

no penalty.

In the presence of year-end bonuses, the fund manager’s effective risk appetite is a func-

tion of the performance of the fund relative to the benchmark. The manager’s willingness

to accept gambles is higher when the fund is underperforming the benchmark, because in

this region the impact of the gamble on the marginal value of the manager’s compensation

is also larger. Thus, it is optimal for the fund manager to distort the portfolio away from

the benchmark and increase its tracking-error volatility when underperforming to improve

the odds of finishing ahead by year-end and capture the bonus. If the fund’s portfolio over-

takes the benchmark in the interim period, it is optimal for the fund manager to lock-in this

relative advantage by replicating the benchmark closely.

An immediate implication of this policy is that it requires high portfolio turnover to

resolve the potentially strong portfolio dislocations.6 Such high turnover requirements imply

heavy trading cost bills to be incurred by fund managers. We simulate the optimal policy

under our baseline setup and find that the expected discounted value of the trading cost

payments in the presence of convex incentives is more than 60 times larger than in the case

without such incentives.

In addition to the direct costs associated with high portfolio turnover, the introduction of

trading costs also reduces the effectiveness of risk-shifting as a strategy to capture year-end

bonuses, because adjusting portfolio positions frequently is prohibitively expensive. Simula-

tion results show that when we increase the trading cost rate from 0% to 1%, the manager’s

risk-adjusted bonus decreases by about 4.61%.7

6 This is consistent with the high portfolio turnover observed in practice for mutual funds. According
to the Investment Company Institute, FactBook 2018, the asset-weighted average portfolio turnover rate of
equity mutual funds, for the period 1984-2017, is around 57%. However, the implication that benchmark-
linked incentives lead to higher turnover are not novel. This result has been obtained by Cuoco and Kaniel
(2011) and Sotes-Paladino and Zapatero (2019), for instance. However, their models do not account for the
effects of transaction costs.

7 The manager’s risk-adjusted bonus is defined as the minimum amount of additional AUM that the
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Therefore, as marginal investors, fund managers demand high liquidity premia to com-

pensate for (i) the heavy trading costs associated with high portfolio turnover, and (ii) the

reduction in total compensation for the portfolio manager due to the strong portfolio dislo-

cations that are difficult to undo because of transaction costs. We decompose the liquidity

premia into these two parts and show that the latter one is the primary contributor to the

amplification effect in our model.

Our results can help reconcile the longstanding disconnect between theory and evidence

regarding the magnitude of liquidity premia, from a novel perspective. Amihud and Mendel-

son (1986) find that the liquidity premium to transaction cost (LPTC) ratio is 1.90 for NYSE

stocks, but this contrasts with the model-implied LPTC ratio of 0.07 in Constantinides

(1986).8 In our model, the estimates of liquidity premia are the same order of magnitude

as the empirical findings. We use a collar function to model year-end bonuses, and match

the moments of the bonus distribution to the empirical estimates provided in Ma, Tang,

and Gomez (2019), to find that our model-implied LPTC ratio increases to 1.175.9 If we

remove the convexity from our model, the LPTC ratio drops to 0.02, similar to the result in

Constantinides (1986).10

In prior work, Jang, Koo, Liu, and Loewenstein (2007) and Lynch and Tan (2011) intro-

duce time-variation in investment opportunities to increase (exogenously) the frequency and

volume of trading for investors, allowing them to generate (mechanically) larger liquidity

premia, but not large enough to match the empirical findings. More recently, Dai, Li, Liu,

manager requires for waiving her bonuses. This measure is a function of managerial risk aversion. The result
is computed under the assumption that trading costs are waived upon trading, to prevent the mechanical
effect that trading costs can have on relative performance. It is important to highlight that, even though we
waive the trading cost payments, the optimal policy that is followed is a policy that includes the no-trading
region generated by those transaction costs.

8 These results are generated using a proportional transaction cost rate of 1% for both purchases and
sales, which means a 2% round-trip charge. We use this as baseline in the rest of our paper, unless stated
otherwise.

9 We assume that the fund manager receives a bonus only if her portfolio outperforms the external
benchmark. Our results remain qualitatively similar when we use any of the alternative specifications used
in Basak, Pavlova, and Shapiro (2007). These additional results are available from the authors upon request.

10 In contrast to Constantinides (1986), the investor in our model does not derive utility from intermediate
consumption, does not have an infinite investment horizon, and has access to a liquid stock which can
be correlated with the illiquid stock. It is important to consider these differences when comparing and
contrasting our results with those in Constantinides (1986).
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and Wang (2016) show that one needs very frequent changes in the investment opportunity

set to generate theoretical liquidity premia that are comparable in magnitude to the empiri-

cal estimates. In contrast, the large premia in our model are generated endogenously, as we

keep investment opportunities constant like in Constantinides (1986). The strong portfolio

distortions and high turnover in our model are the result of the optimal response to the

convexity of the bonus function.

The main empirical prediction of our model is that, the stronger the risk-shifting incen-

tives induced by the convexity in the compensation structure, the larger the LPTC ratio.

We use a sample of U.S. domestic actively-managed equity mutual funds and their portfo-

lio holdings to provide support for this prediction. Specifically, we test whether stronger

risk-shifting incentives in the fund industry are associated with higher liquidity premia. To

the best of our knowledge, this is the first time in the literature that this relation has been

established and tested.

We start by constructing fund-level variables that proxy for convex incentives in the

mutual fund industry. We use the eight risk-shifting measures proposed by Huang, Sialm,

and Zhang (2011). These measures capture the various ways that fund managers can use to

change the riskiness of their portfolios, such as changing the portfolio composition between

equity holdings and cash holdings, and within equity holdings switching between low beta

and high beta stocks, or changing the idiosyncratic risk of the portfolio, by increasing the

tracking-error volatility to their benchmarks, or increasing portfolio concentration in certain

industries or styles.

We aggregate each of the eight fund-level proxies across all funds holding a given stock,

using quarterly share holdings as weights. Then, for each stock, we aggregate across the

eight proxies by averaging the cross-sectional percentile ranks or by using the first principal

component. The final result is a single stock-level proxy that captures the convex incentives

of the mutual funds that hold the stock.11 We then examine how this proxy for stock-level

11 In a previous version of this paper we have used each of the eight proxies individually from the first-
level aggregation, i.e., the aggregation across all funds holding a given stock. The results are qualitatively
similar using each proxy compared to those reported in this paper using the second-level aggregation, i.e.,
the aggregation of the eight stock-level proxies into a single one. The results are available from the authors
upon request.
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convex incentives affects the relation between transaction costs and future stock returns.

We regress excess returns on lagged effective trading cost estimates and their interaction

with convex incentives. In our list of control variables we include stock characteristics such as

size, turnover, and ownership by active mutual funds, among others. We start by confirming

the findings in Hasbrouck (2009) that effective trading costs are strongly related to future

stock returns. But more importantly, we find that the interaction of trading costs with

convex incentives is significant at the 1% level and is economically large: for a 1% increase

in effective trading costs, portfolios of stocks with strong incentives require more than 1%

higher excess return per month. These results are consistent with our theory, that convex

incentives in the mutual fund industry are first-order determinants of the liquidity premia

of stocks, keeping size, turnover, ownership, and other stock characteristics, constant.

In our theory model, the two sources of utility losses for fund managers are the trading

cost charges associated with portfolio rebalancing, and the suboptimal risk-shifting that

results in lost compensation. In the data, we find that the average turnover of the portfolios

of stocks held by funds with strong convex incentives is about double that in the weak

incentive group. The difference is especially large when stocks have low betas, going from

double to three times larger. However, for stocks with high betas, turnover is only about 40%

larger in the strong incentive group. This is consistent with the conjecture in Boguth and

Simutin (2018) that low beta stocks provide lower leverage, and gambling with such stocks

requires larger trades. We also show in the empirical analysis that the relation between

trading costs and turnover is more negative in the high incentive group, suggesting that

fund managers are more likely to gamble using liquid stocks, requiring additional future

return to gamble with illiquid stocks.

The remainder of this paper unfolds as follows. Section 2 reviews the related literature.

Section 3 presents the theoretical framework. Section 4 describes the numerical analysis of

the optimal investment policy, the magnitude of the liquidity premia, and their sensitivity

to changes in parameter values. Section 5 provides empirical evidence to support the novel

predictions of the theoretical model. Section 6 concludes. We relegate to the Appendix

all the technical issues, additional results, and details on the construction of the empirical

variables.

6

Electronic copy available at: https://ssrn.com/abstract=3288875



2 Related Literature

This paper is related to the intersection of two strands of research. First, the research on the

impact of transaction costs on portfolio choice and liquidity premia. Second, the research

on the risk-shifting incentives derived from contracts with option-like characteristics.

The seminal work of Constantinides (1986) shows that introducing transaction costs into

the portfolio choice problem of Merton (1969) leads to a drastic reduction in the frequency

and volume of trading. More importantly, it shows that the expected return that the investor

is willing to exchange for zero trading costs is surprisingly small relative to the transaction

cost rate. The author concludes that transaction costs only have a second-order effect on

liquidity premia.

However, this conclusion is puzzling because it is not in line with many empirical findings

that suggest that transaction costs significantly affect the time-series and the cross-section

of expected stock returns, such as Amihud and Mendelson (1986).

There have been prior attempts to reconcile this apparent disconnect between theory

and evidence regarding the magnitude of liquidity premia. To the best of our knowledge,

there exist three main references. First, is the paper by Jang, Koo, Liu, and Loewenstein

(2007). They argue that the main reason for the puzzling disconnect is the assumption of

constant investment opportunities in Constantinides (1986). They show that, by extending

the model to include time-varying investment opportunities, in the form of stock market

regime shifts, transaction costs can have a larger effect on liquidity premia. The main driver

of their results is the increased amount and frequency of trading induced by the exogenous

(and fully observable) market shifts. Yet, the liquidity premium to transaction cost (LPTC)

ratio that they find, for a reasonable calibration of their regime-switching model, is only

0.25, for a proportional transaction cost rate of 1%. This figure is not large enough to fully

explain the liquidity premium puzzle.12

The second main reference is Lynch and Tan (2011). They use a discrete-time framework

12 In a recent paper by Chen, Dai, Goncalves-Pinto, Xu, and Yan (2020), they relax the assumption
used in Jang, Koo, Liu, and Loewenstein (2007) that regime shifts are fully observable. When regime shifts
are unobservable, and investors need to infer the current market regime from past price movements, the
model-implied LPTC ratio increases significantly. They show that the main driver of their results is the
suboptimal risk exposure, as turnover is low when investors cannot observe the regime shifts.

7
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and incorporate return predictability, labor income, and state-dependent transaction costs.

Their model generates an LPTC ratio of 0.43, for a proportional transaction cost rate of 2%.

This is also significantly lower than the empirical estimates.

More recently, Dai, Li, Liu, and Wang (2016) consider the possibility that markets can

close for trading. However, this is not the feature that drives their results. Instead, it is the

fact that they assume that stock return volatility changes between trading and non-trading

periods. This is equivalent to the assumption of time-varying investment opportunities.

This model is quite successful at bridging the gap between theory and evidence regarding

the magnitude of liquidity premia. For instance, when they take the volatility in trading

periods to be three times higher than that in non-trading periods, the LPTC ratio that they

obtain is 1.76, for a proportional transaction cost of 1%.

It is important to highlight that the common ingredient in the three references described

above is the (exogenous) time-varying nature of investment opportunities. The intuition

for their results is quite simple. If the investment opportunities are changing over time,

then an investor who faces no transaction costs will adjust her asset allocations immediately

to the conditions of the new regime. When transaction costs are introduced, the investor

either trades very frequently and pays a heavy transaction cost bill (Jang, Koo, Liu, and

Loewenstein (2007) and Lynch and Tan (2011)), or she does not trade as frequently but loses

utility from the highly suboptimal risk exposure (Dai, Li, Liu, and Wang (2016)).

We contribute to this theoretical research by proposing an alternative mechanism that

amplifies the effect of transaction costs on liquidity premia. We keep investment opportu-

nities constant, but offer an incomplete contract with option-like characteristics to the indi-

vidual who has residual control over the assets in the portfolio (i.e., the portfolio manager).

These conditions are common in the mutual fund industry. In this industry, households

typically delegate their investment decisions to an investment advisor, who in turn hires a

fund manager. The contract between the investment advisor and the fund manager typically

includes an option-like component associated with the performance of the fund relative to a

self-designated market index, and this component is generally asymmetric: managers receive

a bonus at year-end if they outperform the index, but are not penalized in case of under-

performance. Farnsworth and Taylor (2006) and Ma, Tang, and Gomez (2019) document

8

Electronic copy available at: https://ssrn.com/abstract=3288875



that the inclusion of year-end bonuses in compensation packages is pervasive in the mutual

fund industry. Lee, Trzcinka, and Venkatesan (2019) show that risk-shifting of mutual fund

managers is motivated more by this type of compensation structure than by a tournament

to capture flows.13

3 Theoretical Framework

We introduce proportional transaction costs in the model of Basak, Pavlova, and Shapiro

(2007). Time is continuous and there exist three assets in the economy: a risk-free bond

(S0t) and a benchmark stock (S1t) that are perfectly liquid, and a non-benchmark stock (S2t)

that is subject to transaction costs. We assume that Sit evolves according to the following

process:

dSit = αiSitdt+ σiSitdWit (1)

for i = 1, 2, where the two standard Brownian motions W1t and W2t, defined on a filtered

complete probability space (Ω,F , P ), have constant correlation ρ ∈ [−1, 1]. The expected

returns (αi) and volatilities (σi) are assumed to be constant, like in Constantinides (1986).

We consider a mutual fund manager who invests in these three assets. She can buy

the illiquid non-benchmark stock for the price (1 + λ)S2t, and she can sell it for the price

(1− µ)S2t, where λ ≥ 0 and 0 ≤ µ < 1 represent the proportional transaction cost rates for

purchases and sales, respectively. Let Xt denote the dollar amount invested in the bond and

in the liquid stock, and let Yt denote the dollar amount invested in the illiquid stock. We

13 There is a long strand of empirical research on the tournament incentives derived from the convex flow-
performance relation, starting with Brown, Harlow, and Starks (1996), and Chevalier and Ellison (1997).
However, a few studies have shown that the tournament effect disappears when using different risk-shifting
measures, different methodologies, and different data frequencies. This is why we focus our study on the
year-end bonus component that is typical in fund manager’s compensation contracts. For instance, Busse
(2001) shows that the evidence on mutual fund tournaments disappears when using daily data. Kempf,
Ruenzi, and Thiele (2009) show that the risk-shifting incentive of fund managers is contingent on the state
of the economy and on employment risk. Schwarz (2012) argues that mean reversion in the volatility of fund
returns mechanically generates the tournament effect. Spiegel and Zhang (2013) challenge the economic
foundation for the existence of a convex relation between performance and subsequent fund flows, and they
show that it is in fact linear when properly estimated.

9
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then have the following sub-wealth processes for liquid and illiquid portfolio holdings:

dXt = (rXt + ξt(α1 − r))dt+ σ1ξtdW1t − (1 + λ)dLt + (1− µ)dMt (2)

dYt = α2Ytdt+ σ2YtdW2t + dLt − dMt (3)

where ξt in (2) is the dollar amount invested in the liquid holdings, and Lt and Mt are

non-decreasing processes which denote the cumulative amounts of purchases and sales of the

illiquid stock, respectively, which have initial values L0− = M0− = 0.

We assume the fund manager’s compensation at time T consists of two parts: a manage-

ment fee proportional to the value of assets under management (AUM), and a performance-

based bonus that is determined by the fund’s performance relative to an external benchmark

portfolio. We assume that the benchmark consists of liquid stock and bond, and is contin-

uously rebalanced to maintain a β/(1− β) stock-bond ratio. Therefore, its value Zt evolves

according to the following process:

dZt = (r + β(α1 − r))Ztdt+ βσ1ZtdW1t (4)

Let f ≡ f(Rf
T −Rb

T ) represent the ratio of the manager’s bonus to the management fee.

Then, the manager’s total compensation at time T equals:

k
(

1 + f(Rf
T −R

b
T )
)

(XT + YT ) (5)

where k is the management fee rate, and Rf
T = lnXT +YT

X0+Y0
and Rb

T = lnZT

Z0
are the continuously

compounded gross returns for the fund and the benchmark, respectively, over the period

(0, T ). Since only the growth rate of the fund’s portfolio over that of the benchmark matters

for the calculation of the bonus, we can set Z0 = X0 + Y0 without loss of generality.

Consistent with empirical evidence, we consider a bonus function of the collar-type:

f(Rf
T −R

b
T ) =


fL if Rf

T −Rb
T < θL

fL + ψ(Rf
T −Rb

T − θL) if θL ≤ Rf
T −Rb

T < θH

fH ≡ fL + ψ(θH − θL) if Rf
T −Rb

T ≥ θH

(6)
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where fL ≥ 0, ψ = (fH − fL)/(θH − θL) > 0, and θL < θH . This bonus function exhibits

a local convexity around the lower threshold θL, then increases linearly until it reaches the

upper threshold θH , above which it returns to a flat position.14

We assume that the manager’s objective is to maximize the expected CRRA utility she

derives from the amount of total compensation at time T , which is equivalent to:

max
Θ[0,T ]

E

[
((1 + f)(XT + YT ))1−γ

1− γ

]
(7)

where γ > 0 and γ 6= 1 is the manager’s risk aversion coefficient, and Θ[0,T ] ≡ {(ξs, Ls,Ms) :

0 ≤ s ≤ T} denotes the manager’s investment policy over the period [0, T ].15

In practice, mutual funds are typically subject to prohibitions against borrowing and

short-selling (Almazan, Brown, Carlson, and Chapman (2004)), limits on tracking-error and

cash holdings (Simutin (2014)), and style-drift restrictions such as SEC Rule 35(d)-1. Thus,

we include borrowing and short-selling constraints in our model, and the fund manager’s

admissible investment policies are such that 0 ≤ ξt ≤ Xt and Yt ≥ 0 for all t.

4 Model Implications

This section presents a numerical analysis of the fund manager’s optimal policy, and the

liquidity premia implied by the model. We solve the manager’s problem numerically, since

a closed-form solution is not available. 16

In our baseline model, we use the following parameter values. The expected return and

volatility of the liquid benchmark stock are chosen to match the average annual return and

14 We have examined alternative bonus functions. The results are qualitatively similar to those we obtain
using this collar specification.

15 Like in Dai, Jin, and Liu (2011), our fund manager derives utility from the gross assets rather than the
liquidated assets of the fund. This avoids trading strategies that lead to liquidation at T and helps focus
on the effect of transaction costs on interim trading. In other words, when we compare the cases with or
without transaction costs, the amount of bonuses at T are identical conditional on the same level of relative
performance. This provides a conservative estimate of the effect of transaction costs. As expected, when
the fund manager derives utility from liquidated wealth, the results are strictly stronger than what we are
currently reporting.

16 Appendix A describes the solution method and the numerical procedure, and Appendix B discusses
equilibrium implications.
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volatility, over the period 1950-2017, of the S&P 500 index, with α1 = 9% and σ1 = 14%.

The expected return and volatility of the illiquid non-benchmark stock are chosen to match

the average annual return and volatility, over the same period, of the value-weighted portfolio

formed by the stocks in the lowest decile of market capitalization. This gives α2 = 19% and

σ2 = 24%, and a return correlation of ρ = 0.53 with the S&P 500 index. We assume that

the benchmark is fully invested in liquid stock, i.e. β = 1. We assume a transaction cost

rate of 1%, i.e. λ = µ = 1%. The risk-free rate is estimated from the average T-bill return

over the period 1950-2017, which is r = 4%. We set the fund manager’s risk aversion level

at γ = 5, and the investment horizon at one calendar year (T = 1).

We match the parameter values in the bonus function (6) to the empirical estimates

of Lee, Trzcinka, and Venkatesan (2019) and Ma, Tang, and Gomez (2019): θL = 0.01,

θH = 0.15, fL = 0, and fH = 1.5. This means that, when the performance of the fund’s

portfolio in excess of that of the benchmark is below 1% annually, the fund manager receives

no bonus. If instead the fund’s portfolio is outperforming the benchmark by at least 15%

annually, the fund manager receives a bonus that amounts to 150% of her management

fee. When the relative performance is between 1% and 15%, the amount of bonus increases

linearly with respect to relative performance.

4.1 Optimal Stock Allocations

In our model, the optimal policy is a function of the performance of the fund relative to the

benchmark. Figure 1 illustrates the optimal allocations in benchmark and non-benchmark

stocks at mid-year (i.e., t = T/2). Panel A shows the case without transaction costs (i.e.,

λ = µ = 0%), and Panel B shows the case with a trading cost rate of 1% (i.e., λ = µ = 1%).

Both panels show that the optimal policy entails two types of actions: (i) to deviate from

the benchmark when underperforming (η < 0), and (ii) to lock-in the relative advantage

when outperforming (η > 0). The fund manager achieves (i) by overweighting the non-

benchmark stock in the portfolio and reducing the exposure to the benchmark stock. This

increases the likelihood that the fund will outperform the benchmark by the terminal date,

when the bonus is calculated. This is called the risk-shifting range in Basak, Pavlova, and

Shapiro (2007). The fund manager achieves (ii) by unwinding the entire position on the
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non-benchmark stock and tracking the benchmark very closely. This is especially the case

when the relative performance approaches the upper threshold θH .17 For extreme values of

the relative performance, either positive or negative, the fund manager follows the normal

policy, which is like in Merton (1969) for the case without trading costs in Panel A.

[Insert Figure 1 about here]

Panel B presents the case with transaction costs. Like in other portfolio choice models

with transaction costs (e.g., Constantinides (1986), Davis and Norman (1990), Liu and

Loewenstein (2002), Liu (2004), Chellathurai and Draviam (2007), Jang, Koo, Liu, and

Loewenstein (2007), Dai, Li, Liu, and Wang (2016)), the optimal policy is characterized by

a no-trading region for the non-benchmark stock. The no-trading region is delimited by buy

and sell boundaries, which also exhibit large swings when relative performance η switches

between positive and negative values. For extreme values of relative performance, either

positive or negative, the fund manager chooses a constant range of risk exposure to the

non-benchmark stock, which is similar to the optimal policy in Constantinides (1986).

This optimal policy implies the following trading behaviour for the fund manager. When

the portfolio weight for the non-benchmark stock is pushed to the sell region (the area above

the sell boundary), then the fund manager sells this stock instantaneously to push its portfolio

weight back to the sell boundary. If the portfolio weight on the non-benchmark stock falls

into the buy region (the area below the buy boundary), the manager buys instantaneously

to push it back to the buy boundary. If the portfolio weight on the non-benchmark stock is

between the buy and sell boundaries, the fund manager is better off not trading this stock,

because the improvement in risk exposure is more than offset by the costs incurred with

trading.

17 In our baseline case, we impose the typical position limits that are pervasive in practice, such as
leverage and short-sale constraints (Almazan, Brown, Carlson, and Chapman (2004)). We highlight that,
given the baseline parameter values we use in our model, risk-shifting is not the only reason why the fund
manager holds the illiquid non-benchmark stock. This stock can also provide diversification benefits, given its
imperfect correlation with the benchmark stock in our baseline case, and it can be held for the risk premium
it offers. This is different from the models in Basak, Pavlova, and Shapiro (2007) and Dai, Goncalves-Pinto,
and Xu (2019), where the non-benchmark stock is such that it only carries idiosyncratic risk. We cannot use
such setup, because this would make it impossible to estimate the model-implied liquidity premia in Section
4.2, which is the central focus of our paper.
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The trading boundaries vary dramatically with η. It is very likely that these boundaries

will be hit due to changes in relative performance. The frequency and volume of trading

in the non-benchmark stock are then expected to increase as a result. This is in contrast

with the optimal policy in Constantinides (1986), which resembles the policy in Panel B for

extreme values of relative performance, which is flat and independent of relative performance.

Table 1 reports some statistics for the manager’s optimal investment policy, to understand

the effects of convex incentives on trading. We present three panels for different trading cost

rates. In the first row of each panel, we present the case in which convex incentives are

absent from the fund manager’s problem. The amount of trading is tiny in this case, which

is consistent with the findings of Constantinides (1986) that even small transaction cost

charges can significantly reduce the volume and frequency of trading. For instance, when

convex incentives are absent, and the transaction cost rate is 1% (Panel B), the discounted

value of the transaction costs (PVTC ) paid during the investment period is only 0.001% of

the fund’s initial AUM. In addition, the fund manager trades only 0.36 times per year on

average, assuming at most two trades per business day.

[Insert Table 1 about here]

In the presence of bonuses, the amount of trading increases dramatically, which in turn

leads to a heavy trading cost bill. For example, in Panel B, when the transaction cost rate is

1%, in the presence of bonuses the PVTC rises to 0.481% of the fund’s initial AUM, which

is about 480 times higher than in the case without bonuses. This is indicative that the effect

of transaction costs on the manager’s derived utility is much larger in a model with convex

incentives. We study this question in more detail in the next section.

4.2 Liquidity Premia

In this section, we define liquidity premium, and decompose its sources into two parts: (i)

the part that is directly driven by the trading cost charges associated with stock turnover,

and (ii) the part that is due to suboptimal risk-shifting, as portfolio dislocations become hard

to undo because of transaction costs. We also examine the sensitivity of liquidity premia to

changes in the values of the input parameters.
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4.2.1 Definition and Decomposition

Assume that we have two stocks that are perfectly correlated and have the same volatility,

but one of them is perfectly liquid and the other is subject to transaction costs. For both

of these stocks to be held in equilibrium, the expected return of the stock that is subject to

transaction costs must exceed that of the liquid one. Constantinides (1986) defines liquidity

premium as the maximum expected return an investor is willing to forgo in exchange for

zero transaction costs. We define the liquidity premium in our model in a similar fashion: it

is the quantity δ that solves the following equation:18

ϕ(0, ζ∗, 0;µ, λ, α2) = ϕ(0, ζ∗, 0; 0, 0, α2 − δ) (8)

where the function ϕ(t, ζ, η;µ, λ, α2) is as defined in (23) in Appendix A, and

ζ∗ = arg max
ζ∈[0,1]

ϕ(0, ζ, 0;µ, λ, α2) (9)

is the optimal initial allocation to the illiquid non-benchmark stock.19

Intuitively, transaction costs decrease the manager’s utility through two channels. On

the one hand, the payment of transaction costs directly reduces the amount of AUM. On the

other hand, the fund manager is forced to have a risk exposure that is suboptimal, compared

to the case without transaction costs. In order to differentiate these two effects, we solve the

following equation (like in Dai, Li, Liu, and Wang (2016)):

ϕA(0, ζ∗, 0; 0, 0, α2) = ϕ(0, ζ∗, 0; 0, 0, α2 − δ0)

18 This is equivalent to the following equation expressed in terms of the original value function:
V (0, x, y, z;µ, λ, α2) = V (0, x, y, z; 0, 0, α2 − δ), subject to z = x + y, y/(x + y) = ζ∗, where the value
function V is defined in Appendix A.

19 In the definition of liquidity premium, we set η = 0 because at the start of the investment period the
manager’s portfolio and the benchmark portfolio have the same value, i.e., Z0 = X0 + Y0. In addition, we
choose the optimal ζ in the value function, hence implicitly assume that the fund manager can choose her
optimal initial position at zero cost. Relaxing this assumption does not change our main results. It can only
lead to even higher liquidity premia, because the manager would have to make a lump-sum purchase at the
initial time at a cost.
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where ϕA is the value function when we assume the manager’s optimal strategy (ξ∗t , L
∗
t ,M

∗
t )

is implemented but transaction costs are waived. Therefore, δ0/δ measures the fraction of the

liquidity premium that is due to portfolio displacement compared to trading cost payments.

Table 2 reports the characteristics of the optimal trading policy (at time t = 0) and the

liquidity premia for various levels of transaction costs. In order to facilitate comparison, we

first present in Panel A the case in which the bonus is absent. This case is analogous to

Constantinides (1986), except that we assume a shorter investment horizon, no intermediate

consumption, and the presence of a second stock that is perfectly liquid. We find that the

liquidity premia are very small in this case. For example, when the transaction cost rate is

1% (2%), the liquidity premium to transaction cost (LPTC) ratio (i.e., δc/(λ + µ)) is only

0.017 (0.009). If the fund manager is the marginal investor in this stock, her trading on this

stock commands a negligible liquidity premium.

[Insert Table 2 about here]

However, in the presence of bonuses (Panel B), the liquidity premia can be very large.

For instance, assuming a 1% (2%) transaction cost rate, the liquidity premium (δ) is 2.35%

(3.58%), which translates to an LPTC ratio of about 1.175 (0.895). The last row in Panel B

shows that the liquidity premia in the presence of bonuses (δ) can be 49 to 136 times larger

compared to the case without bonuses (δc).

Panel B also reports the maximum and minimum values for the buy and sell boundaries.

For instance, if the trading cost rate is 1%, the buy boundary goes from a minimumB∗(0, η) =

0.00 to a maximum of B∗(0, η) = 0.55. Figure 1 shows that the minimum is reached when

the fund’s portfolio is outperforming the benchmark and it is optimal for the fund manager

to lock-in the relative advantage by replicating the benchmark closely. The maximum value

is reached somewhere within the risk-shifting range. The corresponding max and min values

for the selling boundary are S∗(0, η) = 0.74 and S∗(0, η) = 0.05, respectively.

Table 2 also shows the proportion of the liquidity premium that is due to direct payments

of trading costs and to portfolio displacements. For example, for a 1% transaction cost rate,

δ0/δ equals 94.68% in the absence of bonuses (Panel A), and equals 50.77% in the presence

of bonuses (Panel B). This means that direct payments contribute more to liquidity premia
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in the presence of bonuses, which is consistent with the results reported in Table 1.20

The results in Panel B suggest that the costs due to portfolio displacement are also

substantial in the presence of bonuses. This is because, when transactions are costly to

execute, the manager’s ability to influence her future relative performance is significantly

hampered. Consequently, the manager’s ability to capture bonuses is weakened, which results

in substantial costs of portfolio displacement. To verify this intuition, we perform Monte-

Carlo simulations to calculate the manager’s risk-adjusted bonus (RAB), which is defined

as the minimum amount of additional AUM that the manager requires for waiving her year-

end bonus. In addition, we consider the case in which the manager follows her optimal

policy (ξ∗t , L
∗
t ,M

∗
t ) under transaction costs but these costs can be waived. This helps isolate

the effect of suboptimality in portfolio composition from the direct trading cost payments.

Figure 2 shows that the suboptimality in risk-shifting created by the presence of transaction

costs substantially reduces RAB. For example, when the transaction cost rate increases from

0% to 1%, RAB decreases by 4.61%, even when the trading costs are assumed to be waived.

[Insert Figure 2 about here]

4.2.2 Comparative Statics

We report comparative statics analyses for the liquidity premia with regards to a battery of

model parameters. Table 3 reports the results of such analyses. In the following, we briefly

discuss some of these results.

[Insert Table 3 about here]

Return correlation. The correlation between the returns of the benchmark and non-

benchmark stocks is an important determinant of the effectiveness of risk-shifting. Intu-

itively, assets which exhibit low correlation with the benchmark are better tools for gam-

bling purposes. If the correlation increases, then the benefit from risk-shifting decreases and

20 The ratio δ0c/δc in our model is larger than in Dai, Li, Liu, and Wang (2016) for two reasons. First, we
consider a relatively short investment horizon of 1 year, and the investor does not trade when near maturity.
Thus, the cost due to portfolio displacement is larger. In contrast, they assume a long horizon, and this
effect is weaker in their model. Second, our investor can trade a perfectly liquid stock which is positively
correlated with the illiquid stock, which further reduces her demand for trading the illiquid stock.
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the fund manager gambles less with the illiquid stock. This is then expected to reduce the

liquidity premia. Table 3 suggests that it is indeed the case. For example, when the return

correlation is increased by 10% from its baseline value of 0.53, the LPTC ratio decreases

from 1.175 to 1.138.

Riskiness of the benchmark portfolio. The riskiness of the benchmark portfolio also

affects the manager’s risk-shifting incentives. In order to outperform a riskier benchmark,

the manager needs to overweight the illiquid non-benchmark stock even more, as it provides

some risk exposure unspanned by the benchmark stock. This in turn leads to larger liquidity

premia. Table 3 shows the changes in LPTC ratio against changes in β, which measures

the riskiness of the benchmark portfolio. It shows that the liquidity premia increase with

β. For example, for a 80-20 stock-bond benchmark portfolio (i.e., β = 0.8), the LPTC ratio

is 1.168, and it increases to 1.175 when the benchmark portfolio is fully invested in liquid

stock (i.e., β = 1, in the baseline case).

Convexity of the bonus-performance relationship. The convexity of the bonus

function is the main driver of the fund manager’s risk-shifting behaviour. Keeping all else

constant, increasing the convexity of this function creates stronger risk-shifting incentives,

and the liquidity premia should increase as a result. We can increase the convexity of the

bonus-performance relation by either shrinking the range of relative performance over which

the function exhibits an upward-sloping pattern, i.e., [θL, θH ], or by increasing the reward

for outperformance, i.e., fH . Table 3 shows that the LPTC ratio increases when we either

reduce θH or increase fH , implying that the liquidity premia increase with the convexity

of the bonus function and the risk-shifting incentives that result from it. This is the main

prediction tested in our empirical analysis of Section 5.

4.2.3 Discussion on Position Limits

In our baseline model we exogenously impose the typical position limits that exist in practice

for mutual funds, such as limits on leverage and short-selling (see Almazan, Brown, Carlson,

and Chapman (2004)). It could be argued that our results are driven by such position limits.

This issue is especially critical for the liquid benchmark stock, which is a better gambling

tool due to its high liquidity. In our baseline, the fund manager is restricted from borrowing
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to buy the benchmark stock on margin, and is restricted from shorting that stock as well.

Trading on the illiquid non-benchmark stock is more likely to happen if the position limits

on the liquid stock are binding. Therefore, one could expect that, if such position limits are

relaxed, the demand for illiquid stock would decrease, and the impact of trading costs on

the derived utility of the fund manager would weaken.

Figure 3 shows what happens when we relax the position limits on the liquid benchmark

stock. We continue to fix the position limit on the illiquid non-benchmark stock to be within

the interval [0, 1], but we relax the position limit on the liquid benchmark stock to lie in the

interval [−a, 1 + a], where a ranges from 0 to 2.21 The results show that the LPTC ratio

only decreases slightly for looser position limits on the liquid benchmark stock.

[Insert Figure 3 about here]

4.3 Other Sources of Convexity: Reference-Dependent Utility

In our main model, the utility function of the economic agent (the fund manager) is globally

concave, and the agent’s convex incentives stem from the convexity of the compensation con-

tract, namely the existence of year-end bonuses. However, in the economics literature more

generally, some utility specifications are designed to exhibit local convexity more directly.

For example, many reference-dependent utilities examined in the behavioural economics lit-

erature have this property. In this section, we show that convex incentives arising from some

reference-dependent utilities can also generate high liquidity premia, and that the effect is

not restricted to the particular model that we examine in the baseline setup of this paper.

Assume the investor only trades in one risk-free asset (bond) and one risky asset (stock).

This setting is similar to Constantinides (1986) with a major difference in terms of the utility

specification. The investor’s objective is to choose her investment policies to maximize

E[U(WT ;R)] (10)

where WT is the investor’s gross wealth level at time T , and R is a reference point which

21 If we relax the position limit of the illiquid non-benchmark stock, the results only become stronger.
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determines the investor’s utility level.22

We consider two popular forms of reference-dependent utility. First, the prospect theory

model proposed in Kahneman and Tversky (1979), which is widely used in behavioural

finance studies. This utility function has the following specification:

U(W ;R) =

 (W −R)p if W ≥ R

−c(R−W )q if W < R
(11)

where 0 < p, q < 1 and c > 0.

Second, the aspiration utility examined in Diecidue and van de Ven (2008) and Lee,

Zapatero, and Giga (2018), which has the following specification:

U(W ;R) =

 W p

p
if W < R

c1
W p

p
+ c2 if W ≥ R

(12)

where 0 < p < 1, c1 ≥ 1 and c2 ≥ 0. This aspiration utility specification captures the idea

that, besides normal consumption, the investor also cares about the status which is revealed

through the consumption of non-divisible goods, such as a luxury car or an apartment. Thus,

the investor’s utility will jump when her wealth reaches the level beyond which she is able

to consume the non-divisible good.

In the following analysis, the default parameter values are set as follows: the risk-free

rate is r = 0.04, the expected return of the risky stock is α = 0.1, the return volatility of the

risky stock is σ = 0.3, and the investor’s investment horizon is T = 1 year. The parameters

in function (11) are calibrated to the estimate of Kahneman and Tversky (1979), as follows:

p = q = 0.88 and c = 2.25. The reference point is set at the investor’s initial wealth level

W0. The parameters in function (12) are set as follows: p = 0.5, c1 = 1.2, c2 = 0, and the

reference point is set at R = 1.2W0.23

Figure 4 plots the investor’s optimal allocation to the risky stock, as a function of her

22 Like what we do in our main model, we assume the investor derives utility from gross wealth level at
time T to exclude the mechanical effect of transaction costs on wealth upon liquidation.

23 For brevity, we omit the details of the mathematical model. They are available from the authors upon
request.
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wealth level. This figure is generated in the absence of transaction costs. In both cases, we

find that the optimal allocation in the risky stock changes dramatically around the reference

point R. This implies that the investor is likely to frequently adjust her stock allocation in

response to fluctuations in wealth level. In particular, when the investor’s wealth level is

below the reference point (i.e. lies in the convex region of her utility function), she increases

the stock allocation rapidly, implying a strong gambling incentive. Therefore, similar to

the intuition developed in our main model, it can be expected that the presence of stock

transaction costs will be particularly burdensome to the investor in this setting.

[Insert Figure 4 about here]

Figure 5 plots the LPTC ratio against the transaction costs rate. The liquidity premium

is calculated at the initial time. It suggests that the liquidity premium can be substantial

when the investor exhibits either prospect theory utility or aspiration utility. For example,

with a transaction costs rate of 1%, the LPTC ratio is above 0.7 in the prospect theory

utility case, and above 1.0 in the aspiration utility case. Figure 5 also shows the LPTC ratio

when we increase the convexity of the utility functions. The convexity of the prospect theory

utility is increased by reducing q from 0.88 to 0.6, and the convexity of the aspiration utility

is increased by reducing R from 1.2W0 to 1.1W0. The results suggest that greater convexity

of the utility functions could significantly amplify the magnitude of liquidity premia. These

results are consistent with the results that we derived from our baseline model in Section 3.

[Insert Figure 5 about here]

5 Empirical Analysis

In this section, we provide evidence in support of the main implications of our theory model.

First, we show that the incentive of mutual fund managers to engage in risk-shifting leads to

higher turnover for the stocks in their portfolios. Second, we show that trading costs have a

positive relation with expected stock returns, especially for stocks held by mutual funds with

strong risk-shifting incentives. To the best of our knowledge, the existing empirical evidence

has not yet verified any of these novel implications of our model.
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5.1 Sample

To test our model, we require information on mutual funds, their quarterly share holdings,

and characteristics of the stocks they hold, especially a measure of stock trading costs. We ob-

tain mutual fund returns, investment objectives, fees, total net assets (TNA), and other fund

characteristics from the Center for Research in Security Prices (CRSP) Survivor-Bias-Free

Mutual Fund Database. We use the Wharton Research Data Services (WRDS) MFLINKS

file to merge this database with Thomson Financial Mutual Fund Holdings (TFMFH), which

contains information on stock positions of funds (i.e., the number of shares of a stock held

by a given mutual fund) and provides identifiers for fund families (Wermers (2000)).24

The latest update of the MFLINKS file on WRDS includes the mapping of mutual funds

to their portfolio holdings from 1980 to 2016. This allows us to set the upper limit of our

sample coverage to the end of 2017, because in our analysis we use information of mutual

fund holdings with a one-year lag. However, we limit our sample to start in 2004, which is the

year when the SEC imposed a new regulation requiring more frequent (quarterly) portfolio

disclosures by mutual funds. This choice of sample coverage from 2004 to 2017 can only bias

our results against our main hypothesis. This is because such increase in the frequency of

portfolio disclosures by mutual funds had a positive effect on stock liquidity, as documented

in Agarwal, Mullally, Tang, and Yang (2015).25 In addition, in 2004 the CRSP mutual fund

database switched its data provider from Morningstar to Lipper, and the overlap between

these two versions of the database is imperfect.

We restrict our analysis to diversified domestic actively-managed equity mutual funds.26

We compute fund-level variables by aggregating across all the share classes. For instance,

the TNA of the fund is the sum of the TNAs of all its share classes.

24 TFMFH only reports relatively large portfolio positions, i.e., with a dollar value of at least $100 million.
This is unlikely to bias our results in favour of our main hypothesis, because the reported holdings are more
likely to be larger and more liquid stocks in the CRSP universe.

25 More generally, stock market liquidity has improved significantly in the more recent period. Ben-
Rephael, Kadan, and Wohl (2015) show that the liquidity premium is indiscernible from zero in the past
two decades. However, we stress that the effective trading cost estimates in our sample are not negligible,
and we are looking at the ratio between liquidity premium and trading cost rate, and this ratio can still be
large, even if the liquidity premium is small.

26 We exclude international, balanced, sector, bond, money market, and index funds.
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Reported fund objectives do not always accurately characterize a fund. Thus, following

Kacperczyk, Sialm, and Zheng (2008) and Glode (2011), we exclude funds that hold on

average less than 80% of their net assets in equity. We also exclude funds with TNA of

less than $5 million, because Elton, Gruber, and Blake (2001) show that the returns of such

small funds tend to be biased upwardly in the CRSP database.27

We extract stock-level information, such as prices, returns, volume, and shares outstand-

ing, from the CRSP Stock Database. We only use common stocks (i.e., share codes 10 and

11). We then merge this data with the mutual fund holdings from TFMFH. The average

number of stocks per month in our final sample is 1,877, and the average number of funds

per quarter is 1,776.

We have computed the number of stock shares held by the active mutual funds in our

final sample, as a percentage of the total shares outstanding. The time-series of the cross-

sectional average of this ownership ratio is reported in Figure 6. The graph shows that the

largest increase in ownership by active funds occurs in 2004, with a 24% increase in average

quarterly ownership compared to 2003. This result also supports our focus on the period

from 2004 to 2016 for most of our main empirical tests, because it is more likely that these

funds will be marginal investors in these stocks during this period.

[Insert Figure 6 about here]

5.2 Main Variables

The main prediction of our theory model is that risk-shifting in the mutual fund industry

is an important factor driving the relation between transaction costs and expected stock

returns. To test this prediction, we need to identify mutual fund managers that are more

(or less) prone to engage in risk-shifting, and we need a measure of trading costs.

Starting with the latter, we use the effective trading cost estimates of Hasbrouck (2009).

The data is available in Joel Hasbrouck’s website, but it ends in 2009.28 We extend his dataset

27 We require 36 months of return history for our analysis, which mitigates the issue of incubation bias
discussed in Evans (2010).

28 http://people.stern.nyu.edu/jhasbrou/Research/GibbsCurrent/gibbsCurrentIndex.html
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until 2017, following the same estimation method. Hasbrouck (2009) performs separate

analyses for NASDAQ, AMEX, and NYSE stocks. We focus part of our analysis on NASDAQ

stocks, like in Eleswarapu (1997), but our results remain qualitatively similar using stocks

from the other two exchanges. After merging all the datasets of the previous section with

this dataset on effective trading costs, our final sample includes 1,760 stocks on average per

cross-section.

Regarding the proxies for risk-shifting incentives, we adopt the study by Huang, Sialm,

and Zhang (2011). They propose eight measures of risk-shifting. We provide a detailed

description of each of these measures in Appendix C. We first calculate each of these fund-

level proxies for every mutual fund in our sample. Next, we aggregate each proxy across all

funds holding a given stock, using their quarterly share holdings as weights. This gives us

one stock-level measure for each proxy. We formulate these proxies such that large values

correspond to greater propensity to risk-shifting, and therefore stronger incentives by the

holders of the stock to engage in gambling.

We then create a composite measure at the stock-level. We use two methods to do

this. First, we use the average percentile rank across the eight proxies. In December of the

prior year, we assign percentile ranks to each stock-level proxy for the whole cross-section of

stocks. Then, we compute the average percentile rank across the proxies for a given stock.

We denote this composite measure as APR.

The second composite measure uses principal component analysis. In December of the

prior year, we compute the principal components across the stock-level proxies, and use the

first principal component obtained from that analysis. We denote this composite measure

as FPC.29

29 These aggregations are useful as we do not need to report multiple iterations of the same tests for each
of the eight stock-level proxies. We report only one test per aggregated measure. However, we have also
used the individual stock-level proxies instead of the composite measures in our empirical analysis, and the
results are qualitatively similar. These results are available from the authors upon request.
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5.3 Portfolio Statistics and Empirical Specification

In this section, we test how risk-shifting incentives (RSI henceforth) of stock holders affect

the relation between effective trading costs and expected stock returns. We proxy for RSI

using either one of the composite measures, APR or FPC, as described above.

For this test, we adopt the methodology used in Hasbrouck (2009). We start by forming

portfolios based on a sequential three-way sort. First, we rank stocks based on the average

RSI in the prior year, and we form two portfolios using the median as cutoff. Second, within

each of the two portfolios, we sort stocks into quintiles based on the beta of the stocks, which

is estimated using a market model over a 36-month lookback window. Third, within each

of the ten portfolios formed with RSI and beta, we sort stocks into quintiles based on the

effective trading cost measure of Hasbrouck (2009). In total, this three-way sort results in

50 portfolios, and the number of stocks per portfolio is around 35. We study the monthly

returns of these 50 portfolios over a 14-year period from 2004 to 2017, which means our final

sample includes a total of 8,400 portfolio-month observations.

In our theory model, we show that convex incentives increase stock turnover. This is

indeed what we find in the data. Table 4 shows that, when we compute RSI using APR

in Panel B (FPC in Panel B), the average turnover of the stocks in the above-median RSI

portfolios is about 66% (67%) higher than the stocks in the below-median group.

[Insert Table 4 about here]

We highlight that, the difference in turnover is specially large for the portfolios of stocks

with low betas. In Panel A, the stocks in the bottom quintile of beta (i.e., beta rank equal

to “Low”) exhibit an average turnover that is about 150% larger in the above-median RSI

group, compared with the below-median group. The turnover of the stocks in the top quintile

of beta (i.e., beta rank equal to “High”) is only about 36% larger in the above-median RSI

group. The difference is similar in Panel B. This is consistent with the idea in Boguth and

Simutin (2018) that low beta stocks provide lower leverage, and gambling with such stocks

requires additional trading.

Next, we examine the relation between trading costs and expected stock returns, and

especially how this relation is affected by convex incentives in the mutual fund industry. We
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use ex-post returns as a proxy for expected returns. We regress the expected returns (in

excess of the risk-free rate) of the 50 portfolios on the lagged effective trading cost measure of

Hasbrouck (2009) and its interaction with an indicator variable for above-median RSI. The

dependent variable is the equal-weighted average monthly return across the stocks within

each portfolio. The portfolio sorting variables (i.e., RSI, beta, and trading cost) are all

measured in the year prior to the year of the portfolio returns.

The full empirical specification for this test is as follows:

Ri,t+1 =γ0 + γcci,t + γdDummyRSIi,t + γcd..(ci,t ×DummyRSIi,t) (13)

+ γtTurnoveri,t + γct..(ci,t × Turnoveri,t)

+ γlLRMCi,t + +γoOwnershipi,t

+ γmβ
m
i + γsβ

smb
i + γhβ

hml
i + ε

where βm, βsmb, and βhml are the unconditional betas obtained from the Fama and French

(1993) three-factor model, estimated over the entire sample period for each portfolio. LRMC

is the log relative market capitalization (i.e., the average median-adjusted market capital-

ization for the stocks in each portfolio). Turnover is the average ratio of trading volume to

shares outstanding across the stocks in each portfolio. Ownership is the ratio of the number

of shares held by active mutual funds to the total number of shares outstanding, for a given

stock. The effective trading cost measure is denoted as c. To assess the impact of RSI on the

relation between trading costs and future excess returns, the regression specification includes

an indicator function DummyRSI, which is equals one for above-median RSI portfolios, and

equals zero otherwise. We interact the indicator function with the effective trading cost (i.e.,

c × DummyRSI ), to assess the impact of RSI on the relation between trading costs and

future stock returns.

5.4 Regression Results

We start by confirming the findings in Hasbrouck (2009) that effective trading costs are

strongly related to future stock returns. In columns (1) and (6) of Table 5 we report positive
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and significant coefficients on the effective tradig cost variable (i.e., c).

[Insert Table 5 about here]

The difference between Panels A and B is the variable used in the sequential sorting to

create the 50 portfolios used in the analysis. In Panel A we use the average percentile rank

(APR) across the eight proxies for risk-shifting, and in Panel B we use the first principal

component (FPC). This explains the slight differences in the regression coefficients for the

trading costs variable across the two panels. These tests control for the variables used in Has-

brouck (2009), which include the relative stock size variable LRMC, and the unconditional

betas from a Fama-French model.

In columns (2) and (7) we control for ownership by the active funds in our final sample.

This guarantees that we are comparing stocks held to the same extent by the funds in the

sample.

In columns (3) and (8) we include the interaction between trading costs and our indicator

DummyRSI to find that it is statistically significant and economically large. For instance,

in column (3) of Panel A the interaction between trading costs and the indicator variable

suggest that, for a 1% increase in effective trading costs, portfolios in the above-median

RSI group require 1.43% higher return per month, compared to those in the below-median

RSI group. Given that the average return in the below-median group is 1.74% per month

(i.e., coefficient of c, when DummyRSI = 0), this is equivalent to 82% larger return for the

above-median RSI group. The results are qualitatively similar in Panel B where FPC is

used.

We have shown in Table 4 that stocks held by funds with above-median RSI exhibit

higher turnover, which is consistent with our theoretical predictions. However, Lee and

Swaminathan (2000) have shown that stock return momentum is strongly affected by past

trading volume. Specifically, they find that stocks with high (low) past turnover ratios earn

lower (higher) future returns. This suggests that we should control for stock turnover in our

tests to rule out this potential alternative driver of returns.
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In columns (4) and (9), we replace our indicator variable with stock turnover, which

is the stock trading volume as a percentage of the number of shares outstanding.30 As

expected, the coefficient on the interaction between trading costs and turnover is positive

and significant. That is, the higher the turnover, the stronger the effect of trading costs on

expected returns.

In columns (5) and (10), we report the results for the full specification, in which the

main variable of interest is the indicator DummyRSI and its interaction with trading costs,

but in which we control for turnover and its interaction with trading costs as well. This

is to address the potential concern that stocks in the above-median RSI groups could be

mechanically associated with high turnover. We conclude that these additional controls do

not explain away the amplification effect that our RSI measures have on the relation between

trading costs and future stock returns. For instance, in column (5), the interaction between

trading cost and the indicator variable has a value of 1.07, which is statistically significant at

1% level. This is equivalent to say that, keeping size, ownership, and turnover constant, the

average monthly return required by above-median RSI portfolios is nearly double the return

required by the below-median group (i.e., the coefficient on c, when DummyRSI = 0), which

is an economically large effect.

Overall, these results suggest that convex incentives in the mutual fund industry are

important determinants of the liquidity premia of stocks. This is evidence consistent with

the main implication of our theory model.

5.5 Convex Incentives and Turnover

In the decomposition analysis of Section 4.2.1, we show that a significant portion of liquidity

premia is generated by the suboptimal risk-shifting imposed by the presence of trading costs.

This suggests that the increased turnover associated with risk-shifting may not be the main

driver of liquidity premia. To provide evidence consistent with this, we estimate an additional

model in which we use portfolio turnover as the dependent variable.

We expect to find the negative relation between trading costs and turnover to be stronger

30 We use turnover instead of trading volume, because the former is a much less skewed variable.
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for stocks held by funds with stronger risk-shifting incentives. This would be consistent

with risk-shifting leading to higher turnover for more liquid stocks than for less liquid ones.

In other words, to use illiquid stocks in their gambling activities, fund managers require

additional compensation in the form of higher future stock returns.

Table 6 reports the results of a regression model with the following specification:

Turni,t+1 =γ0 + γc.ci,t + γd..DummyRSI i,t + γcd..
(
ci,t × DummyRSI i,t

)
(14)

+ γsLn(Size)i,t + γaAlphai,t + γbBetai,t + γvIdioV oli,t

+ γdDivY ieldi,t + γoOwnershipi,t + εi,t

where Turn is the average turnover of the stocks in each of the 50 portfolios, created following

the sequential sorting procedure described above. The indicator DummyRSI and the trading

cost measure (c) are defined as in the previous section. We control for the characteristics

examined in Lo and Wang (2000): (i) the natural log of a stock’s market capitalization,

averaged across all stocks in a portfolio (Ln(Size)), (ii) the intercept coefficient from the time-

series regression of a stock’s return on the value-weighted market return, averaged across all

stocks in a portfolio (Alpha), (iii) the slope coefficient from the time-series regression of a

stock’s return on the value-weighted market return, averaged across all stocks in a portfolio

(Beta), (iv) the residual standard deviation of the time-series regression of a stock’s return

on the value-weighted market return, averaged across all stocks in a portfolio (IdioVol),

and (v) the average dividend yield of the stocks in each portfolio (DivYield). These five

characteristics have been considered important determinants of stock turnover. In addition

to these five variables, we also control for ownership by active mutual funds, as in the previous

section.

[Insert Table 6 about here]

Table 6 shows that, the variables examined in Lo and Wang (2000) are strongly re-

lated with future turnover. But the main coefficient of interest is on the interaction c ×

DummyRSI, which compares the effect of trading costs on turnover between stocks with

high and low convex incentives. The interaction is negative and statistically significant at the
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1% level, with t-statistics ranging from −7.82 to −10.19. This suggests that trading costs

have a significantly more negative effect on stock turnover for stocks held by funds with

stronger risk-shifting incentives. These results are not inconsistent with our main argument.

They imply that the amplification effect found in Table 4 cannot be fully explained by an

increase in turnover, but instead by the suboptimal risk exposure induced by the presence

of trading costs.31

6 Conclusion

In the mutual fund industry, fund managers’ contracts are typically incomplete and include

option-like components, which induce fund managers to engage in gambling, as they hold a

residual control over the assets in their portfolios. We use this industry as a laboratory to

study how convex incentives created by management contracts affect the liquidity premia of

stocks.

Theoretically, we show that the optimal response to the convexities embedded in contracts

is to deviate from the benchmark when underperforming, and lock-in when outperforming.

In the presence of transaction costs, the high portfolio turnover implicit in the optimal

investment strategy generates a heavy trading cost bill. Moreover, trading costs make it

more difficult for fund managers to adjust their portfolio positions, which makes gambling

less effective at capturing year-end bonuses. We show that the suboptimal risk-shifting is

the main contributor to the amplification of the effect of trading costs on liquidity premia.

In other words, the aggregate of fund managers, acting as the marginal investor in a given

stock, demand high liquidity premia to compensate for the bonuses that are lost due to

limitations imposed by trading costs.

Empirically, we show that the interaction between trading costs and convex incentives

are significant and economically large. We show that this is not driven by increased turnover,

31 These results on turnover can also shed some light on the apparently inconsistent findings in Hasbrouck
(2009). This prior work shows that, the coefficient on effective cost is too large (> 1) to be consistent with
a simple trading story. However, we show that, under convex incentives, suboptimal risk exposure can play
a more important role than trading expenses in explaining liquidity premia, and this can help explain the
large magnitude of the coefficients found in Hasbrouck (2009).
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implying that they must be driven by portfolio distortions that are hard to undo because

of trading costs, hampering fund managers’ ability to capture year-end bonuses. Therefore,

they require higher future returns to be willing to gamble with illiquid stocks.

These results suggest that convex incentives in the mutual fund industry are important

determinants of the liquidity premia of stocks. To the best of our knowledge, this is the first

time such results have been reported in the literature.
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Appendix

The content of this Appendix is as follows. Appendix A describes the method used to solve

our baseline problem. Appendix B offers a short discussion on equilibrium implications.

Appendix C describes the construction of the empirical proxies used in Section 5.

Appendix A. Solution Method to the Fund Manager’s Problem

We solve the fund manager’s problem using dynamic programming. For this purpose, we

define the value function for 0 ≤ t ≤ T as follows,

V (t, x, y, z) = max
Θ[t,T ]

E

[
[(1 + f)(XT + YT )]1−γ

1− γ
|Xt = x, Yt = y, Zt = z

]
(15)

Under regularity conditions, V (t, x, y, z) must satisfy the following Hamilton-Jacobi-

Bellman (HJB) equation (cf. Shreve and Soner (1994)):

min
{
− ∂tV − LV, ∂yV − (1− µ)∂xV, (1 + λ)∂xV − ∂yV

}
= 0 (16)

with terminal condition

V (T, x, y, z) =
1

1− γ

[(
1 + f

(
ln
x+ y

z

))
(x+ y)

]1−γ

(17)

in the solution domain Ω = {(t, x, y, z) : 0 ≤ t ≤ T, x ≥ 0, y ≥ 0, z ≥ 0}, where ∂ represents

the partial derivative operator, and the differential operator L is given by:

LV = rx∂xV + α2y∂yV + (r + β(α1 − r))z∂zV +
1

2
σ2

2y
2∂yyV +

1

2
σ2

1β
2z2∂zzV + βρσ1σ2yz∂yzV

+ sup
0≤π≤1

{ [
(α1 − r)x∂xV + βσ2

1xz∂xzV + ρσ1σ2xy∂xyV
]
π +

1

2
σ2

1x
2∂xxV π

2
}

(18)

where πt = ξt/Xt is the fraction of Xt invested in the liquid stock.

Next, we specify the boundary conditions. When Xt = 0, the manager cannot buy the

36

Electronic copy available at: https://ssrn.com/abstract=3288875



illiquid stock due to the leverage constraint. Therefore, when x = 0 we must have:

min {−∂tV − LV, ∂yV − (1− µ)∂xV } |x=0 = 0 (19)

Similarly, when Yt = 0, the manager cannot sell the illiquid stock due to the short-selling

constraint. Therefore, at the boundary y = 0, we must have that:

min {−∂tV − LV, (1 + λ)∂xV − ∂yV } |y=0 = 0 (20)

The homogeneity of the CRRA preferences, and the linearity of (2), (3), (4) and (5)

from section 3, imply that V (t, ax, ay, az) = a1−γV (t, x, y, z) for any a > 0. Thus, by taking

a = 1
x+y

, we obtain:

V

(
t,

x

x+ y
,

y

x+ y
,

z

x+ y

)
=

1

(x+ y)1−γ V (t, x, y, z) (21)

Thus, the solution to our problem can be characterized by a three-dimensional state variable

(t, ζ, η), where ζ = y
x+y

is the portfolio weight of the illiquid stock, and η = ln x+y
z

is the

fund’s performance relative to the benchmark. We denote the left hand side of (21) by the

following:

h(t, ζ, η) = V (t, 1− ζ, ζ, e−η) (22)

and further define

ϕ(t, ζ, η) =
1

1− γ
log[(1− γ)h(t, ζ, η)] (23)

which leads to

V (t, x, y, z) =
(x+ y)1−γ

1− γ
e(1−γ)ϕ(t,ζ,η) =

[(x+ y)eϕ(t,ζ,η)]1−γ

1− γ
(24)

where ϕ(t, ζ, η) is the compounded interest rate that makes the manager indifferent between

following her optimal investment policy or receiving this fixed rate on her initial wealth x+y,

i.e., it represents the certainty equivalent rate of return.

In order to derive the equation that governs ϕ(t, ζ, η), we use the chain rule to calculate
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the partial derivatives of V through the partial derivatives of ϕ. We then obtain that ϕ(t, ζ, η)

satisfies the following equation:

min {−ϕt −Mϕ, M1ϕ, M2ϕ} = 0 (25)

in Σ = {(t, ζ, η) : 0 ≤ t ≤ T, 0 ≤ ζ ≤ 1, η ∈ R}, where

Mϕ = a0 + a1ϕζ + a2ϕη + a3(ϕζζ + γ′ϕ2
ζ) + a4(ϕηη + γ′ϕ2

η) + a5(ϕζη + γ′ϕζϕη)

+ sup
0≤π≤1

{[
b0 + b1ϕζ + b2ϕη + b3(ϕζζ + γ′ϕ2

ζ) + b4(ϕηη + γ′ϕ2
η) + b5(ϕζη + γ′ϕζϕη)

]
π

+
[
c0 + c1ϕζ + c2ϕη + c3(ϕζζ + γ′ϕ2

ζ) + c4(ϕηη + γ′ϕ2
η) + c5(ϕζη + γ′ϕζϕη)

]
π2

}
,

M1ϕ = µ+ (1− µζ)φζ + µφη,

M2ϕ = λ− (1 + λζ)φζ + λφη,

where γ′ = 1− γ, and the remaining coefficients are as follows:

a0 = r + (α2 − r)ζ −
1

2
γσ2

2ζ
2, a1 = ζ(1− ζ)(α2 − r − γσ2

2ζ),

a2 = −β(α1 − r)− ζ(r − α2 + σ2
2γζ − βρσ1σ2γ) +

1

2

(
σ2

2ζ
2 + σ2

1β
2 − 2βρσ1σ2ζ

)
,

a3 =
1

2
σ2

2ζ
2(1− ζ)2, a4 =

1

2

(
σ2

2ζ
2 + σ2

1β
2 − 2βρσ1σ2ζ

)
, a5 = −ζ(1− ζ)(βρσ1σ2 − σ2

2ζ),

b0 = (α1 − r − ρσ1σ2γζ)(1− ζ), b1 = −(α1 − r)ζ(1− ζ) + ρσ1σ2γζ(1− ζ)(2ζ − 1),

b2 = −(1− ζ)(r − α1 − γβσ2
1 + 2γρσ1σ2ζ) + (1− ζ)(ρσ1σ2ζ − βσ2

1),

b3 = −ρσ1σ2ζ
2(1− ζ)2, b4 = (1− ζ)(ρσ1σ2ζ − βσ2

1), b5 = −ζ(1− ζ)
[
κσ1σ2(2ζ − 1)− βσ2

1

]
,

c0 = −1

2
σ2

1γ(1− ζ)2, c1 = σ2
1γζ(1− ζ)2, c2 = −σ2

1γ(1− ζ)2 +
1

2
σ2

1(1− ζ)2,

c3 =
1

2
σ2

1ζ
2(1− ζ)2, c4 =

1

2
σ2

1(1− ζ)2, c5 = −σ2
1ζ(1− ζ)2.

The terminal condition is given by

ϕ(T, ζ, η) = ln (1 + f(η)) . (26)

Given the solution to equation (25) with terminal condition (26), for any given time t ∈ [0, T ],
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the spacial solution domain Σt = {(ζ, η) : 0 ≤ ζ ≤ 1, η ∈ R} splits into three regions:

(i) sell region:

SR ≡ {(ζ, η) :M1ϕ = 0};

(ii) buy region:

BR ≡ {(ζ, η) :M2ϕ = 0};

(iii) no-trading region:

NTR ≡ {(ζ, η) : ϕt +Mϕ = 0}.

Numerical Procedure:

We briefly explain the numerical technique used to solve the variational inequality described

above. We apply the standard penalty methods described in Dai and Zhong (2010). Instead

of directly solving equation (25), we consider the following penalty approximation:

ϕt +Mϕ+K(−M1ϕ)+ +K(−M2ϕ)+ = 0, (27)

where K is a large penalty parameter. In the main algorithm, we apply an iterative method

with error tolerance tol > 0, on a standard finite differences grid, with the following steps

(assume the function value at time t+ ∆t is known):

Step 1: Let i = 0, make an initial guess ϕ0(t, ζ, η) = ϕ(t+ ∆t, ζ, η).

Step 2: Find π∗i = arg max0≤π≤1 f(π, ϕi), where

f(π, ϕ) =

{[
b0 + b1ϕζ + b2ϕη + b3(ϕζζ + γ′ϕ2

ζ) + b4(ϕηη + γ′ϕ2
η) + b5(ϕζη + γ′ϕζϕη)

]
π

+
[
c0 + c1ϕζ + c2ϕη + c3(ϕζζ + γ′ϕ2

ζ) + c4(ϕηη + γ′ϕ2
η) + c5(ϕζη + γ′ϕζϕη)

]
π2

}
.
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Step 3: Solve the discretized version of the following equation:32

ϕi+1
t +M0(π∗i )ϕ

i+1 +K(−M1ϕ
i+1)+ +K(−M2ϕ

i+1)+ = 0, (28)

where the operator M0(π)ϕ is

M0(π)ϕ = a0 + a1ϕζ + a2ϕη + a3(ϕζζ + γ′ϕ2
ζ) + a4(ϕηη + γ′ϕ2

η) + a5(ϕζη + γ′ϕζϕη) + f(π, ϕ).

Step 4: If the following condition holds,

|ϕi+1 − ϕi|
max{1, |ϕi|}

< ε,

then we set ϕ(t, ζ, η) = ϕi+1(t, ζ, η). Otherwise, we set i = i+ 1 and we go back to Step 2.

Appendix B. Discussion on Equilibrium

In our model, we have assumed that fund managers take stock prices as given, and

we compute liquidity premia as the extra return that they would require to be indifferent

between trading the illiquid stock and trading its perfectly liquid counterpart. We derive

our empirical predictions from comparative statics analyses.

However, it would be interesting to extend this setting to allow for multiple fund managers

with heterogeneous incentives who can trade with one another and who can determine stock

prices endogenously. It is beyond the scope of this paper to provide such a model. We only

provide a brief discussion of its potential structure and the challenges that it would entail.

Assume a two-fund model in which the fund managers are endowed with different bench-

marks to cater to two different investors with different preferences for liquid and illiquid

assets. The more conservative benchmark would focus on the liquid asset, and the aggres-

sive benchmark would focus on the illiquid asset.

32When dealing with the nonlinear terms, Newton’s iterative method (smooth or nonsmooth) is used (cf.
Forsyth and Vetzal (2002)).
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The fund managers would would be given compensation contracts with a year-end bonus

component. This would give the fund managers the motive to trade more frequently. In fact,

the incentive to deviate from the benchmark, and given the disparity in benchmarks, could

generate trades in the same asset but in opposite directions, like in the model of Goncalves-

Pinto, Sotes-Paladino, and Xu (2018). Specifically, the manager following a liquid benchmark

would deviate by taking bets with the illiquid asset, while the manager following the illiquid

benchmark would deviate by taking bets with the liquid asset. This would create trading

opportunities.

It would be difficult to solve such a model, because of the complex interdependencies

between the investment policies of the fund managers. However, we believe that the effect

of convex incentives on the relation between trading costs and expected stock returns would

be qualitatively similar to those reported in this paper. We leave this alternative framework

for future research.

In a recent paper by Buss and Dumas (2019), they propose an algorithm to synchronize

trades in a general-equilibrium setting with trading fees. They fully characterize the equilib-

rium and show that asset prices are not affected by the payment of the fees itself, but rather

by the trade-off between smoothing consumption and smoothing holdings that the traders

face. We believe that adding convex incentives to their model could potentially strengthen

the effect of fee payments on asset prices.

Appendix C. Construction of Risk-Shifting Proxies

We follow Huang, Sialm, and Zhang (2011), which studies the performance consequences

of mutual funds varying the risk of their portfolios significantly over time. They propose a

holdings-based measure to capture risk-shifting propensity. Specifically, they compare the

risk of their current holdings, based on the fund’s most recently disclosed positions, with

the realized risk of the fund. They use rolling windows of 12 quarters, and several different

measures of risk for the funds and their holdings. We describe these different measures of risk

below. We use the ratio of current holdings risk to the fund’s risk as a proxy for risk-shifting
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propensity, but the results would be qualitatively similar if we were to use the difference

instead of the ratio.

All holdings volatility: This proxy uses all the portfolio holdings in the calculation

of the risk ratio. the numerator is the standard deviation of the returns of all the portfo-

lio holdings (including equity, bond, cash and others), over the prior 12 quarters, and the

denominator is the standard deviation of the fund’s realized returns over the same prior 12

quarters. If the ratio is larger than 1, then the fund is considered to be increasing the risk of

its portfolio. The return of bonds and preferred stocks is considered to be the total return of

the Barclay Capital Aggregate Bond Index, and for cash holdings and other assets, we use

the Treasury bill rate as return.

Proportion of non-equity positions: Funds can shift portfolio risk by switching be-

tween equity and non-equity holdings, where equity is assumed to be riskier. We aggregate

the portfolio proportions invested in cash, bonds, and other non-equity positions, over the

prior 12 quarters, and divide this aggregate by the most recently disclosed non-equity aggre-

gate portfolio proportion. If this ratio is smaller than 1, it means that the fund is decreasing

the proportion of non-equity holdings in its portfolio, which corresponds to taking less risk.

Equity holdings volatility: In this proxy, we consider only the riskiness of the equity

positions and ignore the non-equity positions. We compare the riskiness of the equity posi-

tions disclosed in the most recently disclosure quarter, with the riskiness of a hypothetical

portfolio that maintains the historically disclosed positions in equity holdings. If the ratio is

larger than 1, the fund is considered to be increasing the risk of its portfolio.

CAPM beta: It could be the case that fund managers change only the systematic risk

of their portfolios, by switching between low beta equities and high beta equities. We esti-

mate the market beta of every equity holding using the CAPM over the 12-quarter lookback

window, and compare the betas of the equity holdings from the most recently disclosed port-

folio, with the CAPM betas of the equity positions from the historically disclosed portfolios.
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CAPM idiosyncratic volatility: This is the standard deviation of the residuals from

the CAPM model used in the previous measure, using the same 12-quarter lookback window.

We take the CAPM idiosyncratic risk from the most recently disclosed portfolio and divide

it by its counterpart using the historically disclosed portfolios. This ratio is larger than 1 if

the fund is increasing its CAPM idiosyncratic risk.

Carhart idiosyncratic volatility: For this proxy, we compute idiosyncratic risk using

the standard deviation of the residuals from the Carhart four-factor model. The treatment

of this measure is otherwise similar to that used for its CAPM counterpart.

Tracking error (value-weighted): The tracking error volatility is the standard devi-

ation of the difference between the fund (or holdings) returns and the benchmark return.

For this proxy, we use the value-weighted total market return from CRSP as the benchmark

return. We take the tracking error of the most recently disclosed holdings and divide it by

the tracking error of the fund’s realized returns. If this ratio is larger than 1, then the fund

is increasing its tracking error volatility.

Tracking error (equal-weighted): For this proxy, tracking error volatility is computed

using the equal-weighted total market return from CRSP as the benchmark return. The

treatment of this measure is otherwise similar to that for its value-weighted counterpart.
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Table 1: Trading Characteristics and the Optimal Investment Policy

This table provides the results on some statistics of the optimal trading policy, including: the average number of
trades executed over the investment horizon (Number of Trades), the total volume of trading over the investment
horizon as a fraction of the fund’s initial AUM (Total Volume (%)), the present value of the transaction costs paid
as a fraction of the fund’s initial AUM (PVTC(%)), and the expected duration from purchase to sale (Time from
Buy to Sell). We obtained these results from 10,000 Monte Carlo simulations of the optimal investment policy in
our model. In the simulations, we assume at most two trades per business day. When calculating the expected
time duration from purchase to sale, we restrict our attention to the sample paths along which there is at least one
purchase and one sale (note that in Panel B and C, no such paths are found in the case with no convex incentives).
We report the results for both the cases with or without bonuses. The parameter values used to generate these
results are as follows: the managerial risk aversion coefficient is γ = 5; the fund manager’s investment horizon is
T = 1 year; the risk-free rate is r = 0.04; the expected value and volatility of the returns on the liquid benchmark
stock are α1 = 0.09 and σ1 = 0.14; the expected value and volatility of the returns on the illiquid non-benchmark
stock are α2 = 0.19 and σ2 = 0.24; the return correlation between the two stocks is ρ = 0.53; the benchmark
is assumed to solely consist of the liquid stock, i.e., β = 1. For the case with bonuses, the parameters in the
bonus-performance function are matched to the empirical estimates of Lee, Trzcinka, and Venkatesan (2019) and
Ma, Tang, and Gomez (2019), as follows: θL = 0.01, θH = 0.15, fL = 0, and fH = 1.5.

Number of Trades Total Volume(%) PVTC (%) Time from Buy to Sell

Panel A: λ = µ = 0.005
No Bonus Case 3.533 0.752 0.004 0.368
Bonus Case 29.482 63.060 0.309 0.161

Panel B: λ = µ = 0.01
No Bonus Case 0.360 0.083 0.001 N.A.
Bonus Case 17.973 49.089 0.481 0.181

Panel C: λ = µ = 0.02
No Bonus Case 0.001 0.000 0.000 N.A.
Bonus Case 6.647 25.143 0.495 0.392
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Table 2: Optimal Policy and Liquidity Premia

This table provides information on the optimal trading policy at the initial time t = 0, and on the liquidity premia
commanded by the fund manager, for multiple values of the transaction cost rate. Panel A reports the results for
the case without convex incentives, and Panel B represents the case with bonuses. In Panel A, S(0) and B(0) are the
levels of the sell boundary and of the buy boundary, which are independent of the performance of the fund relative
to the benchmark due to the absence of convex incentives. In Panel B, S∗(0, η) and B∗(0, η) (S∗(0, η) and B∗(0, η))
are the max (min) levels of the sell and the buy boundaries across different values of relative performance (η). In
Panel A, δc is the liquidity premium commanded by the fund manager, i.e., the maximum level of expected return
on the illiquid non-benchmark stock that the fund manager is willing to forego in exchange for zero transaction
costs. In Panel B, it is denoted as δ. The variable δ0c (δ0) is the liquidity premium exclusively due to the suboptimal
risk exposure due to the presence of transaction costs. The parameter values used to generate these results are as
follows: the managerial risk aversion coefficient is γ = 5; the fund manager’s investment horizon is T = 1 year;
the risk-free rate is r = 0.04; the expected value and volatility of the returns on the liquid benchmark stock are
α1 = 0.09 and σ1 = 0.14; the expected value and volatility of the returns on the illiquid non-benchmark stock
are α2 = 0.19 and σ2 = 0.24; the return correlation of the two stocks is ρ = 0.53; the benchmark is assumed to
solely consist of the liquid stock, i.e., β = 1. For the case with bonuses (Panel B), the parameters values for the
bonus-performance function are matched to the empirical estimates in Lee, Trzcinka, and Venkatesan (2019) and
Ma, Tang, and Gomez (2019), as follows: θL = 0.01, θH = 0.15, fL = 0, and fH = 1.5.

Panel A: No Bonus Case

λ = µ = 0.005 0.01 0.02 0.03 0.04 0.05

S(0) 0.56 0.58 0.62 0.65 0.69 0.73
B(0) 0.45 0.43 0.38 0.34 0.29 0.25
δc (%) 0.031 0.034 0.034 0.034 0.034 0.034
δ0c (%) 0.022 0.032 0.034 0.034 0.034 0.034
δc/(λ+ µ) 0.031 0.017 0.009 0.006 0.004 0.003
δ0c/δc × 100 73.02 94.68 100.00 100.00 100.00 100.00

Panel B: Bonus Case

λ = µ = 0.005 0.01 0.02 0.03 0.04 0.05

S∗(0, η) 0.72 0.74 0.77 0.8 0.82 0.84
S∗(0, η) 0.05 0.05 0.06 0.06 0.07 0.08
B∗(0, η) 0.57 0.55 0.51 0.44 0.35 0.28
B∗(0, η) 0.01 0.00 0.00 0.00 0.00 0.00
δ (%) 1.507 2.349 3.579 4.204 4.534 4.684
δ0 (%) 0.724 1.193 2.551 3.571 4.284 4.613
δ/(λ+ µ) 1.507 1.175 0.895 0.701 0.567 0.468
δ0/δ × 100 48.00 50.77 71.29 84.93 94.50 98.49
δ/δc 49.22 69.03 104.28 122.50 132.10 136.49
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Table 3: Comparative Statics

This table provides information on the optimal trading policy at the initial time t = 0, and on the liquidity premia
commanded by the fund manager, for multiple values of the model parameters. Panel A reports the results for
the case without bonuses, and Panel B represents the case with bonuses. In Panel A, S(0) and B(0) are the
levels of the sell and the buy boundaries, which are independent of the performance of the fund relative to the
benchmark due to the absence of convex incentives. In Panel B, S(0, 0) and B(0, 0) are the levels of the sell and
buy boundaries at the initial time t = 0, with the value of relative performance set to zero (η = 0). In Panel A, δc is
the liquidity premium commanded by the fund manager, i.e., the maximum level of expected return on the illiquid
non-benchmark stock that the fund manager is willing to forego in exchange for zero transaction costs. In Panel B
it is denoted as δ. The parameter values used to generate the baseline results are as follows: the managerial risk
aversion coefficient is γ = 5; the fund manager’s investment horizon is T = 1 year; the risk-free rate is r = 0.04;
the expected value and volatility of the returns on the liquid benchmark stock are α1 = 0.09 and σ1 = 0.14; the
expected value and volatility of the returns on the illiquid non-benchmark stock are α2 = 0.19 and σ2 = 0.24; the
return correlation of the two stocks is ρ = 0.53; the benchmark is assumed to solely consist of the liquid stock,
i.e., β = 1. For the case with bonuses (Panel B), the parameters values for the bonus-performance function are
matched to the empirical estimates in Lee, Trzcinka, and Venkatesan (2019) and Ma, Tang, and Gomez (2019), as
follows: θL = 0.01, θH = 0.15, fL = 0, and fH = 1.5. In each panel, the transaction costs rates are λ = µ = 0.01.

Panel A: No Bonus Case Panel B: Bonus Case

S(0) B(0) δc
λ+µ S(0, 0) B(0, 0) δ

λ+µ
δ
δc

Base case 0.58 0.43 0.017 0.69 0.21 1.175 69.03
γ × 1.1 0.53 0.39 0.020 0.60 0.17 1.221 59.99
γ × 0.9 0.64 0.48 0.013 0.80 0.26 1.111 84.13
ρ× 1.1 0.59 0.44 0.020 0.69 0.21 1.138 55.62
ρ× 0.9 0.56 0.42 0.018 0.69 0.20 1.207 68.59
α2 × 1.1 0.65 0.52 0.018 0.74 0.25 1.129 61.39
α2 × 0.9 0.49 0.34 0.018 0.63 0.15 1.238 68.58
σ2 × 1.1 0.47 0.33 0.027 0.59 0.16 1.314 48.70
σ2 × 0.9 0.71 0.57 0.010 0.82 0.27 1.040 102.68
β × 0.9 0.58 0.43 0.017 0.72 0.23 1.172 68.90
β × 0.8 0.58 0.43 0.017 0.75 0.25 1.168 68.65
θH + 1% 0.58 0.43 0.017 0.69 0.21 1.144 67.25
θH − 1% 0.58 0.43 0.017 0.69 0.20 1.207 70.95
fH = 2.5 0.58 0.43 0.017 0.68 0.16 1.401 82.34
fH = 0.5 0.58 0.43 0.017 0.68 0.31 0.713 41.90
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Table 4: Portfolio Statistics

This table reports summary statistics for 18 out of 50 portfolios of stocks used in our analysis. Assignment of a
stock to a particular portfolio in a given test year depends on three criteria: (1) the average RSI in the previous year
(two groups), (2) the Gibbs Beta in the previous year (five groups), and (3) the Gibbs c in the previous year (five
groups). The Gibbs Beta and c measures are estimated following Hasbrouck (2009). In Panel A, the RSI measure
is computed using APR, which is the average percentile rank across the all the stock-level proxies. In December
of the prior year, we assign percentile ranks to each stock-level proxy for the whole cross-section of stocks. Next,
we compute the average percentile rank across the proxies for a given stock. In Panel B, the RSI measure is
computed as FPC, which is the first principal component across all stock-level proxies from Huang, Sialm, and
Zhang (2011). We report both groups of RSI, but only the quintiles 1 (Low), 3 (Mid), and 5 (high) of Beta and c.
The table reports time-series averages of equal-weighted portfolio means. The sample covers the period 2004-2017.

Panel A: Average Percentile Ranks

APR Beta Rank c Rank Ret Beta c LRMC # Stocks Turnover

Below-Median

Low
Low 0.0058 0.3697 0.0036 -0.8525 34 0.5511
Mid 0.0062 0.3345 0.0089 -1.2858 35 0.4900
High 0.0125 0.3062 0.0221 -2.1328 34 0.5862

Mid
Low 0.0055 0.9186 0.0021 1.1626 35 1.1228
Mid 0.0068 0.8564 0.0049 -0.3693 35 1.1606
High 0.0091 0.6861 0.0145 -1.6287 33 1.1676

High
Low 0.0070 1.4209 0.0026 1.3462 36 1.7232
Mid 0.0103 1.4890 0.0047 0.4184 35 2.0072
High 0.0025 1.3576 0.0095 -0.3038 34 2.1495

Above-Median

Low
Low 0.0065 0.7964 0.0016 1.9815 35 1.5712
Mid 0.0069 0.7814 0.0035 0.3832 35 1.5073
High 0.0137 0.5298 0.0108 -1.1912 35 0.8678

Mid
Low 0.0051 1.1453 0.0016 2.4809 36 1.9598
Mid 0.0052 1.1928 0.0028 1.4811 36 2.2065
High 0.0103 1.2001 0.0054 0.4984 36 2.0397

High
Low 0.0076 1.4966 0.0023 1.8912 37 2.3715
Mid 0.0096 1.6078 0.0039 1.1861 36 3.0415
High 0.0081 1.5870 0.0071 0.6223 36 2.5854

Panel B: First Principal Component

FPC Beta Rank c Rank Ret Beta c LRMC # Stocks Turnover

Below-Median

Low
Low 0.0053 0.3640 0.0036 -0.8550 34 0.5356
Mid 0.0065 0.3395 0.0089 -1.2590 35 0.4976
High 0.0134 0.3015 0.0220 -2.1073 34 0.5855

Mid
Low 0.0065 0.9153 0.0021 1.1499 35 1.1296
Mid 0.0085 0.8528 0.0049 -0.3800 35 1.1921
High 0.0096 0.6897 0.0143 -1.6235 33 1.1976

High
Low 0.0075 1.4312 0.0026 1.3102 36 1.6894
Mid 0.0091 1.4778 0.0047 0.4043 36 1.9745
High 0.0033 1.3651 0.0095 -0.2974 34 2.1099

Above-Median

Low
Low 0.0067 0.8018 0.0016 1.9925 35 1.5780
Mid 0.0112 0.7831 0.0036 0.3081 35 1.5194
High 0.0136 0.5075 0.0115 -1.2875 35 0.8728

Mid
Low 0.0053 1.1430 0.0016 2.4804 36 1.9438
Mid 0.0061 1.1863 0.0028 1.5082 35 2.2534
High 0.0114 1.2023 0.0055 0.4774 36 2.0752

High
Low 0.0068 1.4926 0.0023 1.8957 37 2.4093
Mid 0.0088 1.6089 0.0039 1.1447 36 2.9779
High 0.0076 1.5991 0.0071 0.6194 36 2.5898
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Table 6: Risk-Shifting and Turnover

This table reports the results of a regression of portfolio turnover on lagged trading costs, lagged risk-shifting
incentives, and their interaction. We use the methodology in Hasbrouck (2009). The dependent variable is the
monthly turnover (i.e., the ratio of trading volume to number of shares outstanding) of each portfolio in the year
after formation (equal-weighted across the stocks in each portfolio). To assess the impact of the risk-shifting
on the relation between trading costs and future turnover, the regressions include the indicator DummyRSI
and its interaction with the effective trading cost. We control for several stock characteristics that are im-
portant determinants of stock turnover, following Section 4.1 of Lo and Wang (2000). Specifically, we control
for (i) the natural log of a stock’s market capitalization, averaged across all stocks in a portfolio (Ln(Size)),
(ii) the intercept coefficient from the time-series regression of a stock’s return on the value-weighted market
return, averaged across all stocks in a portfolio (Alpha), (iii) the slope coefficient from the time-series regres-
sion of a stock’s return on the value-weighted market return, averaged across all stocks in a portfolio (Beta),
(iv) the residual standard deviation of the time-series regression of a stock’s return on the value-weighted mar-
ket return, averaged across all stocks in a portfolio (IdioVol), and (v) the average dividend yield of the stocks
in each portfolio (DivYield). In some specifications, we also control for Ownership, which is the number of
shares held by active funds divided by the shares outstanding. t-statistics are reported in parenthesis and
are computed using GMM standard errors that correct for estimation error in the unconditional betas and
for heteroskedasticity, and ∗, ∗∗, and ∗ ∗ ∗ represent significance at the 10%, 5%, and 1% levels, respectively.

APR FPC

(1) (2) (3) (4)

c 0.5981* 0.1073 0.1226 -0.1305
(1.81) (0.34) (0.27) (-0.29)

DummyRSI 0.0489*** 0.0350*** 0.0714*** 0.0417***
(23.05) (16.59) (26.22) (11.14)

c × DummyRSI -2.5418*** -2.6847*** -4.0317*** -3.1371***
(-7.82) (-8.50) (-10.19) (-7.94)

Ln(Size) 0.0253*** 0.0093*** 0.0141*** 0.0070***
(26.61) (7.30) (11.66) (5.04)

Alpha 0.4149 0.1572 0.7728 0.5143
(1.32) (0.49) (1.34) (0.88)

Beta 0.0652*** 0.0600*** 0.0841*** 0.0771***
(13.13) (11.90) (11.06) (10.02)

IdioVol 0.3327*** 0.3309*** 0.1505*** 0.1808***
(9.34) (9.17) (2.94) (3.52)

DivYield -0.4351** -0.5729*** -0.5455*** -0.6428***
(-2.49) (-3.45) (-2.92) (-3.49)

Ownership 0.2302*** 0.1793***
(17.17) (10.23)

Intercept -0.3090*** -0.1389*** -0.1658*** -0.0934***
(-22.28) (-8.62) (-9.61) (-5.06)

Observations 8,400 8,400 8,400 8,400
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Figure 1: Optimal Stock Allocations

This figure shows the fund’s optimal allocation to the benchmark stock and the non-benchmark
stock, as a function of the fund’s performance relative to the benchmark, when the bonuses have a
collar specification. This is a snapshot of the policy at mid-year (t = 0.5). Panel A shows the case
without transaction costs (λ = µ = 0), and Panel B shows the case with a transaction cost rate of
1% (λ = µ = 1%). In Panel A, the fund trades continuously to maintain the optimal exposures
on the benchmark stock (dashed line) and the non-benchmark stock (solid line). In Panel B, the
fund only trades the non-benchmark stock when the allocation on this stock is either above the
sell boundary (solid line) or below the buy boundary (dashed line). The dotted line in Panel B
represents the average allocation on the benchmark stock. The parameter values used to generate
these results are as follows: the managerial risk aversion coefficient is γ = 5; the fund manager’s
investment horizon is T = 1 year; the risk-free rate is r = 0.04; the expected value and volatility
of the returns on the liquid benchmark stock is α1 = 0.09 and σ1 = 0.14; the expected value and
volatility of the returns on the illiquid non-benchmark stock is α2 = 0.19 and σ2 = 0.24; the return
correlation of the two stocks is ρ = 0.53; the benchmark is assumed to be fully invested in the liquid
stock, i.e., β = 1; the parameters in the bonus-performance function are matched to the empirical
estimates of Lee, Trzcinka, and Venkatesan (2019) and Ma, Tang, and Gomez (2019), as follows:
θL = 0.01, θH = 0.15, fL = 0, and fH = 1.50.
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Figure 2: Trading Costs and Reduction in Risk-Adjusted Bonuses

This figure shows the decrease in the manager’s risk-adjusted bonuses (RAB), which is defined as
the minimum amount of additional AUM that the manager requires for waiving her bonuses, due to
the presence of transaction costs on the non-benchmark stock. The black-coloured bars represent
the total decrease in RAB, and the grey-coloured bars represent the decrease in RAB exclusively
due to the suboptimal risk exposure caused by the presence of transaction costs (i.e., the trading
costs are waived). The remaining parameter values used to generate these results are as follows:
the managerial risk aversion coefficient is γ = 5; the fund manager’s investment horizon is T = 1
year; the risk-free rate is r = 0.04; the expected return and the volatility of returns for the liquid
benchmark stock are α1 = 0.09 and σ1 = 0.14, respectively; the expected return and the volatility
of returns for the illiquid non-benchmark stock are α2 = 0.19 and σ2 = 0.24, respectively; the
return correlation of the two stocks is ρ = 0.53; the benchmark is assumed to be fully invested
in the liquid stock, i.e., β = 1; the parameters of the bonus function are as follows: θL = 0.01,
θH = 0.15, fL = 0, and fH = 1.5.
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Figure 3: Relaxing the Position Limits on the Liquid Benchmark Stock

This figure shows the liquidity premium to transaction cost (LPTC) ratio for different position limits
on the benchmark stock. We fix the position limit on the illiquid non-benchmark stock to be within
the interval [0, 1], but we relax the position limit on the liquid benchmark stock to fall in the interval
[−a, 1 + a], where a ranges from 0 to 2 (i.e., the x-axis in the figure). The remaining parameter
values used to generate these results are as follows: the managerial risk aversion coefficient is γ = 5;
the fund manager’s investment horizon is T = 1 year; the risk-free rate is r = 0.04; the expected
value and volatility of the returns on the liquid benchmark stock is α1 = 0.09 and σ1 = 0.14; the
expected return and the volatility of the returns of the illiquid non-benchmark stock are α2 = 0.19
and σ2 = 0.24, respectively; the return correlation of the two stocks is ρ = 0.53; the benchmark
is assumed to be fully invested in equity, i.e., β = 1; the parameters of the bonus-performance
function are matched to the empirical estimates of Lee, Trzcinka, and Venkatesan (2019) and Ma,
Tang, and Gomez (2019), as follows: θL = 0.01, θH = 0.15, fL = 0, and fH = 1.5.
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Figure 4: Optimal Trading Strategy with Non-Concave Utility Functions

This figure shows the optimal allocation in the stock at time t = 0.5, as a function of the investor’s
wealth level, when using the prospect theory utility function (Panel A) or the aspiration utility
(Panel B). The parameter values used to generate these results are as follows: the investor’s in-
vestment horizon is T = 1 year; the risk-free rate is r = 0.04; the expected value and volatility of
the returns of the risky stock are α = 0.1 and σ = 0.3, respectively; the parameters in the prospect
theory utility function (i.e., equation (11)) are calibrated to the estimates of Kahneman and Tver-
sky (1979), as follows: p = q = 0.88, c = 2.25, and the reference point is set at the investor’s initial
wealth level, i.e., R = W0; the parameters in the aspiration utility function (i.e., equation (12)) are
set as follows: p = 0.5, c1 = 1.2, c2 = 0, and the reference point is set at R = 1.2W0.
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Figure 5: Non-Concave Utility Functions and Liquidity Premia

This figure shows the liquidity premium commanded by the investor when using the prospect
theory utility (Panel A) or the aspiration utility (Panel B). The parameter values used to generate
these results are as follows: the investor’s investment horizon is T = 1 year; the risk-free rate
is r = 0.04; the expected value and volatility of the returns of the risky stock are α = 0.1 and
σ = 0.3, respectively; the parameters in the prospect theory utility function (i.e., equation (11))
are calibrated to the estimates of Kahneman and Tversky (1979), as follows: p = q = 0.88 (q = 0.6
for the case with greater convexity), c = 2.25, and the reference point is set at the investor’s initial
wealth level, i.e., R = W0; the parameters in the aspiration utility function (i.e., equation (12)) are
set as follows: p = 0.5, c1 = 1.2, c2 = 0, and the reference point is set at R = 1.2W0 (R = 1.1W0

for the case with greater convexity).
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Figure 6: Stock Ownership by Active Mutual Funds

This figure plots the ownership by active mutual funds for each quarter, for the period 1982-2016.
For each stock, we take the number of shares held by active mutual funds, and divide it by the
total number of shares outstanding. Next, we take the cross-sectional average of this ownership
ratio across all stocks in each quarter, and plot the time-series of this cross-sectional average. This
only includes stocks listed on the NASDAQ.
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