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We study a dynamic mean-variance portfolio optimization problem under the reinforcement learning frame-

work, where an entropy regularizer is introduced to induce exploration. Due to the time-inconsistency

involved in a mean-variance criterion, we aim to learn an equilibrium strategy. Under an incomplete market

setting, we obtain a semi-analytical, exploratory, equilibrium mean-variance strategy that turns out to follow

a Gaussian distribution. We then focus on a Gaussian mean return model and propose an algorithm to

find the equilibrium strategy using the reinforcement learning technique. Thanks to a thoroughly designed

policy iteration procedure in our algorithm, we can prove our algorithm’s convergence under mild conditions,

despite that dynamic programming principle and the usual policy improvement theorem fail to hold for an

equilibrium solution. Numerical experiments are given to demonstrate our algorithm.

Key words : asset allocation; reinforcement learning; equilibrium mean variance analysis; entropy

regularized exploration-exploitation

History : This paper was first submitted on May 12, 2020.

1. Introduction

Mean-variance portfolio optimization, founded by Markowitz (1952), marks the beginning of mod-

ern finance and becomes a key component of data-based investment. However, almost all practical

applications of mean-variance analysis have been restricted to static or myopic investment (cf.

Black and Litterman (1991)), partially due to two barriers. First, a mean-variance analysis has

an inherent time-inconsistency issue such that most of the dynamic mean-variance strategies are

1
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either time-inconsistent or not conforming with conventional investment wisdom (Dai et al. 2020).

Second, a dynamic mean-variance model is sensitive to parameter values, but calibrating a dynamic

model is notoriously difficult (cf. Merton (1980), Luenberger (1998)).

Driven by recent trends in financial innovation and the needs in the big data era, we aim to

design an efficient algorithm to learn a dynamic, time-consistent mean-variance strategy by virtue

of mass financial data. More specifically, we will combine the concept of equilibrium mean-variance

solution and the reinforcement learning (RL, for short) technique to overcome the two barriers

aforementioned.

This work is motivated by two recent developments in this area. The first is made by Dai et al.

(2020) who propose a dynamic, equilibrium mean-variance criterion for portfolio’s log-returns (here-

after log-MV criterion, for short).1 The criterion leads to an analytical, time-consistent strategy

that complies with conventional investment wisdom even in some incomplete markets. Moreover,

one can easily elicit investors’ risk aversion preference associated with the criterion, which makes

promising a model-based robo-advising system. We will follow Dai et al. (2020) to consider the log-

MV criterion and seek an equilibrium (time-consistent) strategy. Different from Dai et al. (2020)

with given model parameters, we assume unknown model parameters and aim to learn the strategy

in terms of RL.

The second development is made by Wang et al. (2019) who propose a general continuous-

time exploratory stochastic control framework with RL. They introduce entropy to characterize

exploration in a control formulation and develop an RL algorithm to learn optimal strategy. Wang

and Zhou (2020) apply this framework for a pre-committed mean-variance strategy and find a

significant improvement over traditional MLE-based methods. In this paper, we will borrow their

idea to consider an equilibrium mean-variance solution. It is worthwhile to point out that finding an

equilibrium solution is not standard in the RL literature, as there is neither dynamic programming

principle nor an objective functional to optimize.

Our major contributions can be summarized as follows.
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(i) We extend the exploratory stochastic control framework in Wang et al. (2019) to an incom-

plete market, where the asset return is correlated with a stochastic market state. The exten-

sion is not restricted to mean-variance portfolio optimization problems. It is interesting to

notice that to derive an “exploratory” market dynamics in the incomplete market, a new

Brownian motion that is independent of the market is introduced into the market dynamics

associated with randomized control action. Our formulation indicates that the new Brown-

ian motion is to model the noise caused by exploration. For a complete market, we are able

to recover the single Brownian motion involved in Wang et al. (2019) for their exploratory

market dynamics, but we highlight that the Brownian motion is essentially different from the

original Brownian motion driving the market. For details, see Section 2.2.

(ii) We obtain a semi-analytical solution for the equilibrium log-MV problem under the

exploratory framework in the incomplete market. Interestingly, we find that the exploratory

equilibrium strategy also follows a Gaussian distribution whose mean coincides with the (non-

exploratory) strategy studied in Dai et al. (2020). Moreover, its variance is proportional to the

exploration-exploitation parameter, the reciprocal of one’s risk preference, and the reciprocal

of instantaneous variance of the stock price. This suggests that if the proposed exploratory

problem is solved effectively, then one may learn the true equilibrium solution by taking the

expectation of the exploratory strategies. For details, see Section 3.

(iii) For algorithm design and numerical implement, we take for example the Gaussian mean return

model, for which we obtain a closed-form, exploratory, equilibrium mean-variance solution.

It should be pointed out that different from the traditional policy iteration procedure arising

from a dynamic optimization problem (e.g. Wang and Zhou (2020)), a policy iteration for an

equilibrium solution usually does not possess the nice property of policy improvement. We

propose a novel policy iteration procedure with a carefully selected initial guess and prove

its convergence to the desired equilibrium solution under mild conditions. Our proof provides

a new perspective to analyze RL algorithms by generalizing the iteration of parameters to
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the iteration of functions that are embedded into a suitable function space. For details, see

Section 4. Based on the policy iteration procedure, we develop an RL algorithm to learn

the equilibrium strategy. To the best of our knowledge, this paper is the first one to study

equilibrium strategy in terms of RL. Numerical results on simulated data set demonstrate

the efficiency and robustness of our algorithm; see Section 6.

Related Literature

The original mean-variance portfolio optimization problem formulated by Markowitz (1952) is for a

single period. It is challenging to extend the mean-variance analysis to a dynamic setting due to the

inherent time-inconsistency issue, i.e., a mean-variance strategy that is optimal today may not be

optimal tomorrow.2 A naive way of handling the time-inconsistency in a multi-period setting is to

optimize a myopic mean-variance criterion at each step, ignoring its dynamic nature and rolling up

until maturity (e.g. Aı̈t-Sahali and Brandt (2001) and Campbell and Viceira (2002)). Unfortunately,

such a myopic strategy turns out to be significantly sub-optimal in many incomplete markets (e.g.

Kim and Omberg (1996), Brandt (1999), and Campbell and Viceira (1999)). A more sophisticated

way is to seek the so-called pre-committed mean-variance strategy that is optimal only at initial

time, disregarding subsequent sub-optimality and time-inconsistency (e.g. Li and Ng (2000) and

Zhou and Li (2000)). However, a pre-committed strategy, while applied to a robo-advising system,

may confuse the general public due to the time-inconsistency.

Basak and Chabakauri (2010) provide an alternative way to attack the time-inconsistency

involved in a mean-variance criterion: though the problem itself is time-inconsistent, one may seek

a time-consistent strategy. The idea is later extended by Björk et al. (2017) to provide a general

framework for handling time-inconsistency, which leads to the so-called equilibrium strategy that

can be regarded as a subgame perfect Nash equilibrium in dynamic games. In this paper, we focus

on the equilibrium strategy as we believe that time-consistency is a fundamental requirement for

rational decision making. In particular, we adopt the log-MV criterion proposed by Dai et al.

(2020) because equilibrium strategies associated with other existing mean-variance criteria may
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conflict with some of conventional investment wisdom (cf. Basak and Chabakauri (2010), Björk

et al. (2014), and Dai et al. (2020)). The major difference between this paper and Dai et al. (2020)

lies in that we work with an exploratory framework and aim at developing an RL algorithm to find

equilibrium solution without knowing market parameters.

This paper is related to a strand of literature on RL, which is about how a software agent interacts

with environment to maximize her payoff. The agent’s actions serve as a mean to both explore

(learn) and exploit (optimize). In some sense, RL combines parameter estimation and optimization

together. Nowadays, RL has become one of the most active and fast developing areas of machine

learning, due to its success in playing go (Silver et al. 2016, 2017), video games (Mnih et al. 2015),

controlling robotics (Deisenroth et al. 2013), designing autonomous driving (Levine et al. 2016)

and so on. Such huge success also draws attentions of both researchers and practitioners in the

financial industry, such as Nevmyvaka et al. (2006) and Hendricks and Wilcox (2014) on trade

execution, Moody et al. (1998) and Moody and Saffell (2001) on algorithmic trading, and Guéant

and Manziuk (2019) on market making. In particular, there are many attempts to apply RL in

dynamic portfolio optimization; see, e.g. Neuneier (1996), Gao and Chan (2000), Jin and El-Saawy

(2016), and Ritter (2017), but these studies are all under the utility maximization framework. In

contrast, we consider mean-variance portfolio optimization that is intuitively more appealing.

Extant literature on mean-variance portfolio optimization with RL has been restricted to the

pre-committed strategy; see, e.g. Sobel (1982), Sato and Kobayashi (2000), Sato et al. (2001),

Tamar and Mannor (2013), Prashanth and Ghavamzadeh (2013, 2016), and Wang and Zhou (2020).

Compared with the literature, we aim to look for an equilibrium mean-variance strategy with RL.

Moreover, we allow the market to be incomplete with an observable stochastic factor.

Most of existing algorithms, like the ε-greedy algorithm and its variants, treat exploration sep-

arately as an exogenous ad-hoc choice, rather than include exploration as part of optimization

objective (e.g. Tokic (2010) and Sutton and Barto (2011)). A discrete time entropy-regularized RL

framework is proposed in Ziebart et al. (2008) and Todorov (2007), where exploration is incorpo-

rated into the optimization objective (see also Azar et al. (2011), Fox et al. (2015), and Nachum
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et al. (2017)). Wang et al. (2019) propose a continuous-time entropy-regularized RL framework,

where the policy is extended to a probability-measure-valued process, and they show that the opti-

mal exploratory control policies must follow a Gaussian distribution when the objective reward is

a quadratic function. As an application, Wang and Zhou (2020) show that under the Black-Scholes

market, the exploratory, pre-committed mean-variance strategy follows a Gaussian distribution. In

this paper, following Wang et al. (2019), we incorporate an entropy-regularizer into a continuous-

time mean-variance criterion for portfolio’s log return proposed by Dai et al. (2020) and learn an

equilibrium mean-variance strategy that proves to follow a Gaussian distribution even under an

incomplete market setting. Moreover, we find that as with Wang et al. (2019) for the Black-Scholes

market, our exploratory formulation under an incomplete market is still linked to the relaxed

stochastic control theory (cf. Fleming and Nisio (1984) and Zhou (1992)).

Most RL algorithms are based on the dynamic programming principle, e.g., the well-known

Q-learning and its variants (cf. Watkins and Dayan (1992), Van Hasselt et al. (2016), and Doya

(2000)). The dynamic programming principle, however, cannot be applied directly to mean-variance

portfolio optimization. Zhou and Li (2000) employ an embedding technique such that the dynamic

programming principle can still be applied to find a pre-committed strategy. Sato et al. (2001)

introduce a TD-learning algorithm to estimate the variance and a gradient-based RL algorithm

on the mean-variance problem. Using a linear function approximation, Tamar and Mannor (2013)

present an actor-critic algorithm and prove its convergence to a locally optimal point. Their method

is further developed by Prashanth and Ghavamzadeh (2013, 2016) and Wang and Zhou (2020).

We combine the idea of TD-error and the actor-critic approach to approximate and evaluate poli-

cies and value functions simultaneously. As in Wang and Zhou (2020), we also propose a simple

parametrization method that mimics the theoretical solution, without involving neutral networks.

More importantly, we present an algorithm for the equilibrium solution for time-inconsistent prob-

lems.

The rest of the paper is organized as follows. In Section 2, we present the market setup and

introduce an exploratory, entropy-regularized, mean-variance problem as well as the definition
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of the associated equilibrium solution. A semi-analytical, exploratory, equilibrium mean-variance

strategy is given in Section 3. In Section 4, we focus on the Gaussian mean return model and

present a policy iteration procedure as well as its convergence analysis. An RL algorithm based on

the convergence analysis is proposed in Section 5. Numerical results are given to demonstrate the

algorithm in Section 6. We conclude in Section 7. All technical proofs and additional results are

relegated to E-Companion.

2. Model Setup

2.1. Market Environment

Assume two assets available for investment: a riskless asset (bond) with interest rate r and a risky

asset (stock). The stock price is governed by:

dSt
St

= µtdt+σtdBt, (1)

where Bt is a scalar-valued Brownian motion, and µt and σt depend on a stochastic market state

Xt. We further assume that Xt is a diffusion process satisfying

dXt =mtdt+ νt[ρdBt +
√

1− ρ2dB̃t], (2)

where ρ is a constant and B̃t is another (scalar-valued) Brownian motion that is independent of Bt.

We assume that µt ≡ µ(t,Xt), σt ≡ σ(t,Xt), mt ≡m(t,Xt), and νt ≡ ν(t,Xt) are all deterministic

functions, which, however, we do not know.

Note that the above market model, similar to that in Dai et al. (2020), is very general and covers

many popular models as our special cases. For example, it covers the Gaussian mean return model

and the stochastic volatility model discussed in Wachter (2002) and Liu (2007), respectively.

A self-financing wealth process Wt can be described as

dWt

Wt

= [r+ (µt− r)ut]dt+σtutdBt,

where ut, representing the fraction of total wealth invested in stock at time t, is a scalar-valued

adapted process and can be regarded as a strategy. For later use, we introduce the portfolio’s log

return process Rt = logWt, which satisfies:

dRt =

[
rt + (µt− rt)ut−

1

2
σ2
tu

2
t

]
dt+σtutdBt. (3)
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2.2. An Exploratory Version of the Portfolio Return Process

Let T be the investment horizon. Recall the dynamic mean-variance criterion proposed in Dai

et al. (2020), which is a trade-off between mean and variance of the log return of the portfolio RT ,

namely,

Et [RT ]− γ
2

Vart [RT ] .

Here Et[·] and Vart[·] stand for the conditional expectation and variance at time t, respectively,

and γ measures the trade-off between mean and variance. This criterion can yield an analytical

equilibrium strategy that conforms to common investment wisdom (cf. Dai et al. (2020) for more

discussion). We will incorporate learning (i.e. exploration) into the mean-variance formulation.

Consider an investor who aims to seek a dynamic mean-variance equilibrium strategy through

RL. The investor tries to learn the “best” strategy based on learning by doing, through the interac-

tions with the environment. Due to information incompleteness, the investor has to make a balance

between exploration, through which she gathers more information that might lead to better deci-

sions, and exploitation, through which she makes the best decision with current information. One

way to do exploration is adding a small noise to each action (namely, strategy) taken. Following

Wang et al. (2019), we randomize the strategy process ut and result in a distributional strategy

process whose density function is as given by {πt, 0≤ t≤ T}.

As our market set up involves the market state Xt, the “exploration” version of the portfolio

return process associated with distributional strategy process is different from that in Wang et al.

(2019). To give an intuition about what the dynamics should look like, let us examine the discrete

time case at time t:

∆Rt =

[
r+ (µ− r)u− 1

2
σ2u2

]
∆t+σu∆Bt.

Let u be sampled from an independent distribution π, and consider the following increment:

∆̃ :=

[
r+ (µ− r)

∫
R
uπ(du)− 1

2
σ2

∫
R
u2π(du)

]
∆t + σ

∫
R
uπ(du)∆Bt

+

√∫
R
u2π(du)− (

∫
R
uπ(du))2∆B̄t
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with B̄t being another Brownian motion. It follows

E
[
∆̃
]

=

[
r+ (µ− r)

∫
R
uπ(du)− 1

2
σ2

∫
R
u2π(du)

]
∆t,

Var
[
∆̃
]

= σ2

∫
R
u2π(du)∆t+ o(∆t), Cov

[
∆̃,∆Xt

]
= ρνσ

∫
R
uπ(du)∆t+ o(∆t).

It is easy to see that ∆̃ approximates ∆Rt on first and second moments.

Motivated by the above observation, we replace (3) by the following process that is associated

with randomized strategy characterized by π and will be used in the exploratory mean-variance

formulation:

dRπ
t =

[
r+ (µt− r)

∫
R
uπt(du)− 1

2
σ2
t

∫
R
u2πt(du)

]
dt

+σt

[∫
R
uπt(du)dBt +

√∫
R
u2πt(du)− (

∫
R
uπt(du))2dB̄t

]
,

(4)

where B̄t is another Brownian motion that is mutually independent of Bt and B̃t.

Equation (4) characterizes the impact of the strategy on the portfolio return process. It is

worthwhile pointing out that in a complete market where µt and σt do not depend on the market

state Xt, we can merge two Brownian motions of Equation (4) into one Brownian motion and thus

recover the formulation as given in Wang et al. (2019).3 In an incomplete market, it is interesting to

note that (4) involves a new Brownian motion B̄t. Intuitively speaking, Bt and B̃t in (4) and (2) are

used to model the market noises, while B̄t is introduced to model the noise caused by exploration

and can be regarded as a “random number generator” that the investor uses to generate a random

strategy. The coefficient of dB̄t term reflects the variance of πt, measuring how much additional

noise is introduced into the system. Later we will see that consistent with the observation of Wang

et al. (2019), our new dynamic system also falls within the relaxed control framework in Fleming

and Nisio (1984) and Zhou (1992), where control policies are extended to probability distributions.

2.3. Entropy-regularized Mean Variance Problem

We now follow Wang et al. (2019) to incorporate an entropy regularizer into the mean-variance

criterion over Rπ
t and get the following reward functional:

J(t,Rπ
t ,Xt;π) :=Et

[
Rπ
T +λ

∫ T

t

H(πs)ds

]
− γ

2
Vart [R

π
T ] . (5)
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where Rπ
t and Xt follow (4) and (2), respectively, λ represents the exploration weight that will

be tuned to achieve a nearly best trade-off between exploration and exploitation,4 and H is the

entropy of the strategy distribution as defined below:

H(π) =


−
∫
R
π(u) logπ(u)du, if π(du) = π(u)du,

−∞, otherwise.

It should be emphasized that time inconsistency is an inherent issue of a mean-variance problem.

We will follow Björk et al. (2017) to consider an equilibrium mean-variance solution associated

with the entropy-regularized mean-variance criterion (5). Before introducing the definition of an

equilibrium solution, let us first define admissible feedback control πs = π(s,Rs,Xs) as we are

interested in feedback strategy.

Definition 1. π= {πs, t≤ s≤ T} is called an admissible feedback control, if

(i) for each t≤ s≤ T , πs ∈P(R) a.s., where P(R) stands for all probability measures on the real

numbers;

(ii) πs = π(s,Rs,Xs), where π(·, ·, ·) is a deterministic mapping from [t, T ]×R×R to P(R);

(iii) Et
[∫ T
t

∫
R |σsu|

2πs(du)ds
]

+Et
[∫ T
t

∫
R |µsu|π(du)ds

]
<∞.

The collection of all the admissible controls in the feedback form at time t is denoted as Πt.

We are ready to define the equilibrium solution as follows:

Definition 2. An admissible control π∗ is called an equilibrium policy, if, at any time t, for any

perturbation control πh,v defined by

πh,vτ =


v, for t≤ τ ≤ t+h,

π∗τ , for t+h≤ τ ≤ T.

with any h ∈R+ and v ∈ P(R), the entropy-regularized mean-variance functional is locally better

off, namely

lim inf
h→0+

J(t,Rt,Xt;π
∗)−J(t,Rt,Xt;π

h,v)

h
≥ 0.

Furthermore, for an equilibrium control π∗, the equilibrium value function V ∗ is defined as

V ∗(t,Rt,Xt) := J(t,Rt,Xt;π
∗).
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An equilibrium policy that is optimal locally at any time given that the policy will be followed

in the future. It is consistent with the subgame perfect Nash equilibrium in the dynamic games in

economics.

3. Equilibrium Strategy

In this section, we provide a characterization of equilibrium solution for the general incomplete

case. The complete market case is much simpler and is relegated to E-Companion EC.2.

The following theorem shows that a semi-analytical equilibrium policy exists in general under

mild conditions.

Theorem 1. Assume that E
[∫ T

0
θ2
sds
]

and E
[
e

γ2

1+γ2
(
∫ T
0 (rt+θ

2/2)dt+
∫ T
0 θt/ρdB

X
t

]
<∞, where θt =

θ(t,Xt) = µ(t,Xt)−r
σ(t,Xt)

and dBX
t = ρdBt +

√
1− ρ2dB̃t. Then, we have the following results:

(i) An equilibrium policy is given by

π∗(t,X)∼N (
µt− rt

(1 + γ)σ2
t

− ργZt
(1 + γ)σt

,
λ

(1 + γ)σ2
t

), (6)

where Zt is uniquely determined by the following backward stochastic differential equation

(BSDE):

dYt =−f(t,Xt,Zt)dt+ZtdB
X
t , YT = 0 (7)

with f(t,X,Z) = r− λ
2(1+γ)

+ 1
2
θ2(t,X)− γ2(θ(t,X)+ρZ)2

2(1+γ)2
.

(ii) There exists a deterministic function h(·, ·) such that Yt = h(t,Xt). Moreover, if h∈C1,2, then

h solves the following partial differential equation (PDE):

∂th+m∂Xh+
1

2
ν2∂XXh+ f(t,X, ν∂Xh) = 0, h(T,X) = 0, (8)

and Zt = ν∂xh(t,Xt).

(iii) Under the equilibrium policy (6), we have

V ∗(t,R,X)≡ J(t,R,X;π∗) =U∗(t,X) +R;

g∗(t,R,X)≡Et[Rπ∗

T |Rπ∗

t =R,Xt =X] = h∗(t,X) +R.

(9)
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for some function h∗ and U∗ with h∗(T,X) = U∗(T,X) = 0. Moreover, if h∗,U∗ ∈C1,2, then

h∗ satisfies (8) and U∗ satisfies

∂tU +m∂XU +
1

2
ν2∂XXU + r+

(µ− r− ργνσ∂Xh∗)2

2(1 + γ)σ2
+

1

2
log

2πλ

(1 + γ)σ2
− γ

2
ν2|∂Xh∗|2 = 0.

(10)

The above theorem indicates that under mild regularity conditions, one can construct an equi-

librium policy by solving a BSDE. Note that even in an incomplete market, the distribution of

the exploratory equilibrium strategies is still Gaussian. Moreover, the mean of the exploratory

strategies turns out to be independent of the exploration weight λ. This suggests a separation of

the exploration and exploitation, which is also observed in Wang et al. (2019) and Wang and Zhou

(2020).

Equations (7) and (8) are almost the same as the corresponding equations in Dai et al. (2020),

except that function f in the former involves the exploration weight λ. On the other hand, the

variance of exploratory strategies is proportional to the exploration weight, as well as the reciprocal

of the risk aversion and instantaneous variance of stock return. This implies that as the investor

becomes more risk averse or the market gets more volatile, the equilibrium policy will get more

concentrated and the investor is less willing to explore environment.

Unlike the pre-committed strategy discussed in Wang and Zhou (2020), the variance of our

equilibrium solution does not necessarily decay in time. For instance, if the stock volatility is a

constant, then the variance of our equilibrium strategy remains a constant. This result is partially

due to two reasons. First, given the requirement of a subgame perfect equilibrium, the “future self”

and the “current self” will not coordinate on exploration due to the lack of self-commitment, which

causes inefficiency.5 Second, there is no discount term in the accumulative reward for exploration

in our objective functional (5), which indicates that exploration at any time would be rewarded

equally. Therefore, it looks as if the investor would choose a myopic exploration at any time,

according to the backward induction procedure. To incorporate increasing exploration experience
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into our model, one could simply add a time-decaying exploration parameter in the running reward.

Such a design is discussed in E-Companion EC.1.

The BSDE approach used here for studying equilibrium policy is first introduced in Dai et al.

(2020). Compared with the PDE approach in Björk et al. (2017), the BSDE approach usually

requires less regularity of solution to a system of Hamilton–Jacobi–Bellman (HJB) equations. The

PDE approach for a verification theorem will be discussed in E-Companion EC.5, where Equations

(8) and (10) also appear in the system of HJB equations. Therefore, the BSDE approach and the

PDE approach share the same PDE system if a classical solution is admitted.

As an application of Theorem 1, we consider the time varying Gaussian mean return model,

namely

µ(t,X) = r+σX,σ(t,X) = σ,m(t,X) = ι(X̄ −X) and ν(t,X) = ν,

where r, σ, ι, X̄, and ν are all positive constants. The following Proposition shows that a closed-

form equilibrium solution is available for this model.

Proposition 1. For the Gaussian mean return model, an equilibrium strategy is

π∗(t,X)∼N
( X

(1 + γ)σ
− γρν

(1 + γ)σ
(a∗2(t)X + a∗1(t)),

λ

(1 + γ)σ2

)
(11)

with 
a∗2(t) =

(1 + 2γ)

(1 + γ)2

e2C1(T−t)− 1

(C1 +C2)(e2C1(T−t)− 1) + 2C1

a∗1(t) =
ιX̄(1 + 2γ)

(1 + γ)2

(eC1(T−t)− 1)2

C1[(C1 +C2)(e2C1(T−t)− 1) + 2C1]
,

(12)

where C1 = 1
γ+1

[γ2(ι+ ρν)2 + ι2(2γ+ 1)]
1
2 and C2 = ι+ γ2ρν

(1+γ)2
.

Moreover, the associated V ∗ and g∗ have the following form:

V ∗(t,R,X) =R+
1

2
b∗2(t)X2 + b∗1(t)X + b∗0(t),

g∗(t,R,X) =R+
1

2
a∗2(t)X2 + a∗1(t)X + a∗0(t),

(13)

where a∗2(t) and a∗1(t) are as given by (12), and a∗0(t), b∗1(t), and b∗2(t) are given in E-Companion

(EC.13) and (EC.14).
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It can be observed that for the Gaussian mean return model, the mean of the exploratory

equilibrium strategy coincides with the classical equilibrium strategy studied in Dai et al. (2020).

It means that if an investor follows the mean strategy to invest, then she would obtain the same

strategy as one who knows market parameters. Moreover, the variance of exploration in learning

indeed remains at a constant level. Hence, when designing an algorithm, we shall simply look for a

constant instead of a complex function as the exploration variance. This may greatly simplify the

algorithm.

An application to the stochastic volatility model is presented in E-Companion EC.4.

4. Numerical Methods

Let us first describe the basic idea about how to use the RL technique to find equilibrium policy.

4.1. General Discussions

In the standard RL algorithm (Sutton and Barto 2011), a learning procedure usually consists of

two iterative steps:

(i) Given a policy π, compute the associated value function V π;6

(ii) Update the previous policy π to a new one π̃ according to the obtained value function V π.

We want to employ a similar procedure to design a numerical algorithm. Therefore, it is important

to understand two questions: (1) what is the value function V π associated with a feasible policy?

and (2) what is the criterion to update the policy?

Let πt = π(t,Rt,Xt) be an admissible policy. The value function associated with the policy π is

defined as V π(t,Rt,Xt) = J(t,Rπ
t ,Xt;π), and an auxiliary value function is defined as

gπ(t,R,X) :=Et [Rπ
T |Rπ

t =R,Xt =X] ,

where Rπ
t is the portfolio return process associated with the control policy π.

According to Björk et al. (2017), (V π, gπ) should satisfy the following PDE system under certain

regularity conditions as given in E-Companion EC.5:

∂tV
π +Aπt V π + γgπAπt gπ −

γ

2
Aπt (gπ)2 +λH(πt) = 0, V π(T,R,X) =R, (14)
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∂tg
π +Aπt gπ = 0, gπ(T,R,X) =R, (15)

where two differential operators Aut for any u∈R and Aπt for any π ∈P(R) are defined as follows:

Aut ϕ(t,R,X) :=

[
r+ (µ(t,X)− r)u− 1

2
σ2(t,X)u2

]
∂Rϕ+m(t,X)∂Xϕ

+
1

2
σ2(t,X)u2∂RRϕ+ ρν(t, x)σ(t, x)u∂RXϕ+

1

2
ν2(t,X)∂XXϕ,

(16)

Aπt ϕ :=

∫
R
Aut ϕπ(du).

Note that from the relaxed control perspective, the operator as given in (16) is most crucial to the

system.7

Using the above notations, the equilibrium condition becomes

π∗(t,R,X) = argmax
π∈P(R)

Aπt V ∗+ γg∗Aπt g∗−
γ

2
Aπt (g∗)2 +λH(π), (17)

where V ∗ = V π∗ and g∗ = gπ
∗
.

Therefore, equations (14) and (15) answer our first question on policy evaluation, and the

equilibrium condition (17) answers the second question on policy update. Inspired by the above

observations, we propose a learning process for the equilibrium strategy as the follows:

• Policy Evaluation Procedure: given a policy π, compute the related value function

V π(t,Rt,Xt) := J(t,Rt,Xt;π)

and expectation function gπ(t,Rt,Xt) :=Et [Rπ
T |Rt,Xt];

• Policy Update Procedure: obtain a new policy π̃ according to optimality condition (17)

with (V π, gπ) in place of (V ∗, g∗), i.e.

π̃(t, x) = argmax
v∈P(R)

AvtV π + γgπAvt gπ −
γ

2
Avt (gπ)2 +λH(v).

4.2. Numerical Analysis for Gaussian Mean Return Model

From now on, we shall focus on the Gaussian mean return model to discuss how to design a RL

algorithm. We need to show that it really works. That is, starting from a policy π, it will converge

to an equilibrium policy eventually.
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In the RL context, it is proved that (under certain regularity condition) such learning procedure

will succeed for the reward maximization problem (Sutton and Barto 2011). One key step is to

establish the so-called policy improvement theorem (see, e.g. Sutton and Barto (2011) and Wang

and Zhou (2020)). That is, comparing with previous policy π, one has V π̃ ≥ V π for an updated

policy π̃. It means that the learning process can improve the performance of the policy. Thus, it

is reasonable to infer that, after sufficient iterations, the obtained policy is an optimal one, or at

least, very close to that.

However, later we will see that our learning process fails to lead to a monotone iteration algorithm

because what we seek is “optimality” in the equilibrium sense, and our proposed iteration lacks

monotonicity in value function. Fortunately, we are able to show that under certain conditions,

our iteration with a carefully selected initial guess is convergent to an equilibrium policy. Indeed,

inspired by analytical form of the equilibrium policy (11), we would like to choose our initial guess

for the equilibrium policy π(0) to have a constant variance and an affine function of X as its mean.

To simplify our analysis, we assume that it admits the following form:

π(0)(t,X)∼N
( X

(1 + γ)σ
− γρν

(1 + γ)σ
(a

(0)
2 (t)X + a

(0)
1 (t)), θ(0)

)
, (18)

where a
(0)
2 (t) and a

(0)
1 (t) are two deterministic functions of time t, and θ(0) is a constant. We will

show that the numerical procedure would converge as long as a
(0)
2 satisfies certain conditions.

For the initial guess as given by (18), we will show that the updated policies always keep the

structure of the equilibrium policy (11). Further, we can prove that this iterative process converges

locally to the desired equilibrium policy, and converges globally under the following assumption.

Assumption 1. There exists M ≥ 0 such that

M ≥ TC(M,T ),

where C(M,T ) := max{ γ2

(1+γ)2
(1− ρνM)2− 1, γ2

(1+γ)2
(1 + ρνT )2− 1}.

Note that if ρν is sufficiently small, we can verify 0 ≥ TC(0, T ) and thus Assumption 1 holds

true.

We now summarize the above results as the following theorem.
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Theorem 2. With the initial guess (18), adopt the iteration procedure as given in Section 4.1.

Denote by π(n), n= 1,2, ... the sequence of updated policies. Then we have the following results.

(i) The updated policy π(n), n≥ 1 satisfies

π(n)(t,X)∼N
( X

(1 + γ)σ
− γρν

(1 + γ)σ
(a

(n)
2 (t)X + a

(n)
1 (t)),

λ

(1 + γ)σ2

)
,

where the pair (a
(n)
1 (t), a

(n)
2 (t)) satisfies

ȧ
(n)
2 = 2ιa

(n)
2 +

γ2

(1 + γ)2
(1 + ρνa

(n−1)
2 (t))2− 1, a

(n)
2 (T ) = 0,

ȧ
(n)
1 = ιa

(n)
1 − ιa

(n)
2 +

γ2ρν

(1 + γ)2
(1 + ρνa

(n−1)
2 )a

(n−1)
1 , a

(n)
1 (T ) = 0.

(19)

(ii) There exists ε > 0 such that the policy sequence {π(n)} converges to the equilibrium policy as

given in (11) if ‖a(0)
2 − a∗2‖ ≤ ε.

(iii) Suppose that Assumption 1 holds true, and a
(0)
2 (t)∈ [−M,T ] for any t∈ [0, T ]. Then the policy

sequence {π(n)} converges to the equilibrium policy as given in (11).

There are two important observations in Theorem 2. First, the form in (18) is preserved in this

procedure. Hence it suffices to parametrize the iterative policy through two deterministic functions

(a
(n)
2 (t), a

(n)
1 (t)), rather than complicated neutral networks of functions of X, R, and t. Second,

the variance of exploration equals that in the equilibrium after one step of iteration (assuming no

estimation error in policy evaluation).

Part (ii) of Theorem 2 indicates a local convergence. That is, if the initial guess is close to the

equilibrium policy as given in Proposition 1, then our algorithm is guaranteed to converge to the

policy. For a dynamic game, a local convergence is usually the best result we could expect, as there

might be multiple equilibria. However, we show that the requirement on the initial guess can be

relaxed and a global convergence can be obtained. Indeed, part (iii) of Theorem 2 reveals that

under some mild conditions, the iteration will converge to the desired equilibrium as long as the

initial guess is bounded.
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5. RL Algorithm Design

In this section, we will propose an RL algorithm to learn the equilibrium policy. Although the

problem is in a continuous time setting in previous sections, to implement the algorithm, we have

to approximate it in a discrete time setting. We then divide the time interval [0, T ] into N equal

time intervals [ti, ti+1], i= 0,1,2....,N − 1, where ti = i∆t with ∆t= T
N

.

Let us first describe how to generate market data through simulation.

Market (simulation)

To generate the state processes by simulation, we apply the forward Euler scheme to discretize the

controlled system (4) with any realized strategy ui. That is, given market state Xi, current return

Ri, and the proportion ui invested in the risky asset at time ti, we generate the state Xi+1 and

return Ri+1 at time ti+1 in the following way:

Xi+1 =Xi + ι(X̄ −Xi)∆t+ ν(ρZi+1 +
√

1− ρ2Z̃i+1)
√

∆t,

Ri+1 =Ri + (r+σXiui−
1

2
σ2u2

i )∆t+σ
√

∆tZi+1,

(20)

with R0 = 0, where Zi+1 and Z̃i+1 are two independent random variables drawn from standard

normal distributions.

Market (real data)

When real data is available, the sequence of stock price Si at time ti can be directly observed. We

then generate the discrete return state in terms of observed stock price:

Ri+1 =Ri +ui
Si+1−Si

Si
+ (1−ui)r∆t−

u2
i

2S2
i

(Si+1−Si)2. (21)

The above construction is based on an application of Itô’s formula to equation (3), namely,

dRt = ut
dSt
St

+ (1−ut)rdt−
1

2

u2
t

S2
t

d〈S〉(t),

and (21) is the forward Euler discretization of the above stochastic differential equation.
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In a real market, the market price of risk X is not directly observable. However, we may use

some alternative observed data as a proxy. For example, we may follow the existing literature (e.g.

Campbell and Viceira (1999) and Barberis (2000)) to approximate X by the dividend-price ratio.8

Certainly, such approximations must lead to a bias, and we shall discuss the impact of noisy market

state on our learning in Section 6.2.

Value Function and Policy parametrization

In the common practice of RL, the value function and strategy are usually parametrized with

(deep) neural networks. Thanks to Proposition 1 and Theorem 2, we are able to parametrize the

strategy and value functions with a simple and more explicit expression. Indeed, let p :RK×R→R

be a parametrized value function with RK representing the parameter space. We then introduce

the following parametrization

V Θ(t,R,X) = p(θV,2, T − t)X2 + p(θV,1, T − t)X + p(θV,0, T − t) +R,

gΘ(t,R,X) = p(θg,2, T − t)X2 + p(θg,1, T − t)X + p(θg,0, T − t) +R,

(22)

where Θ = (θV,2, θV,1, θV,0, θg,2, θg,1, θg,0)∈R6K represents all the parameters for (V, g). One way to

choose the parametrized value function p is to express it as a linear combination of several bases,

e.g. p(θ, t) =
∑K

k=1 θkφk(t), where φk is called the feature function. The most common choices of the

features are polynomials, radial basis functions, or wavelet functions. Similarly, we also parametrize

the strategy as

πψ,ξ ∼N
(
W (ψ,T − t,X), λξ2

)
,

where ψ ∈ RK2 is the parameter in the mean, and λξ2 stands for the variance of the exploration

strategy. Specified parametrized functions p and W will be given later (see (25) and (26)).

Numerical analysis in Section 4.2 indicates that our iteration processes all possess the same

form and converge to the equilibrium policy. As a consequence, in our implementation, we choose

W (·, T − t,X) in the same form of the equilibrium policy in order to accelerate convergence. Com-

pared with the widely used (deep) neural networks approximation in literature, our approximation
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significantly saves computational costs. Our numerical results show that our approximation is

already sufficiently accurate.

One may also consider to tailor the functional form in the parametrization of the value function

to fit our specific model, which might simplify the resulting optimization problem. However, we do

not adopt this approach due to two reasons. First, we would like to provide a general framework to

show the feasibility of our algorithm that is less sensitive to a specific model. Second, the analytical

form of value function is very complicated for the Gaussian mean return model, hence a specific

parametrization based on the analytical form might not simplify the numerical procedure too much.

Policy Valuation Procedure

Assume that we have collected a sequence of data (ti,Ri,Xi) with a given strategy πψ,ξ. In this

policy valuation procedure, we shall choose Θ in the parameter space such that (V Θ, gΘ) best

approximates the value functions (V πψ,ξ , gπ
ψ,ξ

). As shown in Corollary EC.1, V πψ,ξ and gπ
ψ,ξ

satisfy

(14) and (15) with πψ,ξ in place of π. From Itô formula, we see that

Et
[
ϕ(t+ ∆t,Rπ

t+∆t,Xt+∆t)
]
−ϕ(t,Xt,Rt) =Et

[∫ t+∆t

t

(∂s +Aπs )ϕ(s,Rπ
s ,Xs)ds

]
.

Since gπ
ψ,ξ

solves (15), it implies that gπ
ψ,ξ

(t,Xt,Rt) is a martingale. If gΘ is close to gπ
ψ,ξ

, it is

natural to think that gΘ is close to be a martingale.

Define

C2
i (Θ,ψ, ξ) :=

gΘ(ti+1,Ri+1,Xi+1)− gΘ(ti,Ri,Xi)

∆t
(23)

and

C1
i (Θ,ψ, ξ) :=

V Θ(ti+1,Ri+1,Xi+1)−V Θ(ti,Ri,Xi)

∆t

+ γgΘ(ti,Ri,Xi)
gΘ(ti+1,Ri+1,Xi+1)− gΘ(ti,Ri,Xi)

∆t

− γ
2

(gΘ)2(ti+1,Ri+1,Xi+1)− (gΘ)2(ti,Ri,Xi)

∆t
+λH(πψ,ξti

).

(24)

The value function can be approximated by choosing Θ that minimizes

N−1∑
i=0

(
C1
i (Θ,ψ, ξ)

)2
+
(
C2
i (Θ,ψ, ξ)

)2
.
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C1
i and C2

i are also called the temporal difference error (TD error) or the Bellman error that

has been used in Doya (2000) and Wang and Zhou (2020) for dynamic optimization problems. In

the algorithm, instead of directly finding the exact minimizer, we will use the stochastic gradient

based algorithm to solve this minimization problem for one step and then start to iterate. The

squared error is widely used in many RL algorithms (cf. Doya (2000) and Sutton and Barto (2011))

due to the convention that the square error minimizer might be a reasonable approximation of the

condition expectation.9

Policy Update Procedure

In the policy update procedure, we shall update policy according to the optimality condition (17)

for the given function (V Θ, gΘ). Define

L(ψ, ξ; t,R,X) :=Aπ
ψ,ξ

V Θ + γgΘAπ
ψ,ξ

gΘ− γ
2
Aπ

ψ,ξ

(gΘ)2 +λH(πψ,ξ).

Ideally, the updated policy should maximize L(ψ, ξ; t,R,X) over all possible values of (t,R,X).

Since we only have the data (ti,Ri,Xi), we shall try to maximize
∑N−1

i=0 L(ψ, ξ; ti,Ri,Xi) instead.

Once again, we plan to use the gradient descent method to find the optimal solution. However,

we cannot compute the derivative directly for the current parameter (ψ, ξ) since the operator A is

unknown. To approximate the derivative, we use the smooth functional method that has been used

by Prashanth and Ghavamzadeh (2013) for risk-sensitive problems (see Bhatnagar et al. (2013) for

an introduction). The method is motivated by the following observation. Let δκ be the Gaussian

intensity with variance κ2. For any continuous differentiable function L, we see that

∫
R
δκ(x− z)∇L(z)dz =

∫
R
∇δκ(x− z)L(z) =

1

κ

∫
R
z′δ1(z′)L(x− γz′)dz′.

When κ→ 0, the left hand side of the above equation converges to ∇L(x). Thus, a reasonable

estimation of ∇L(x) would be

∇L(x)≈ ∆

κ
(L(x+κ∆)).
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One can further reduce the variance by using the following approximation

∇L(x)≈ ∆

κ
(L(x+κ∆)−L(x)).

To apply the smooth functional method, we need to compute L(ψ̃, ξ̃; ti,Ri,Xi) for a set of

perturbed parameters (ψ̃, ξ̃) as well as L(ψ, ξ; ti,Ri,Xi) for the current policy parameters (ψ, ξ).

From discussion in the previous part, it is natural to approximate L(ψ, ξ; ti,Ri,Xi) as

L(ψ, ξ; ti,Ri,Xi)≈Ci(Θ,ψ, ξ).

For the perturbed strategy, we shall use the TD error once again to approximate L(ψ̃, ξ̃; ti,Ri,Xi).

For that purpose, at time ti, besides using current strategy πψ,ξ, we shall also use another perturbed

strategy πψ̃,ξ̃ to obtain another return R̃i+1. Then, L(ψ̃, ξ̃; ti,Ri,Xi) is approximated as

L(ψ̃, ξ̃; ti,Ri,Xi)≈
V Θ(ti+1, R̃i+1,Xi+1)−V Θ(ti,Ri,Xi)

∆t

+ γgΘ(ti,Ri,Xi)
gΘ(ti+1, R̃i+1,Xi+1)− gΘ(ti,Ri,Xi)

∆t

− γ
2

(gΘ)2(ti+1, R̃i+1,Xi+1)− (gΘ)2(ti,Ri,Xi)

∆t
+λH(πψ̃,ξ̃ti

).

Having this, we can approximate the derivative and apply the gradient descent method. Finally,

in our implementation, we apply the Adam algorithm introduced by Kingma and Ba (2014) in

policy update procedure to approximate the equilibrium strategy.

It should be emphasized that the policy update procedure in our algorithm is very different

from the algorithm for learning the pre-committed strategy in Wang and Zhou (2020), where their

algorithm can be guaranteed to improve the strategy monotonically. However, we do not have

such monotonic pattern for an equilibrium solution, since there is no optimality in terms of value

functions. On the other hand, we compute the gradient with respect to the parameters in the policy

(known as the policy gradient) to update our policy, according to optimality in the equilibrium

condition (17).

Combining all these together, we propose the following algorithm.
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Algorithm 1 Exploring Equilibrium Strategy

Input: Market data, riskless interest rate r, learning rate α, investment horizon T , discretization

∆t, exploration rate λ, number of iterations M , smoothing functional parameter κ, risk aversion

γ, the parametrized value function p(θ, t), and W (ψ, t,X)

Initialize θ,ψ, ξ

for k= 1 to M do

for i= 0 to N − 1 do

Sample ∆1,i ∼N (0, I2K),∆2,i ∼N (0,1), ε∼N (0,1)

Compute current investment decision u=W (ψ,T − ti,Xi) + ξ
√
λε

Compute perturbed investment decision ũ=W (ψ+κ∆1,i, T − ti,Xi) + (ξ+κ∆2,i)
√
λε

Sample Ri+1,Xi+1 from Market with decision u and current state (Ri,Xi)

Sample R̃i+1 from Market with decision ũ and current state (Ri,Xi) at the same time

end for

Policy Valuation Procedure

Compute the TD error based on (24) and (23).

Compute ∆θV,j =
∑

iC
1
i (Θ,ψ, ξ)∂θV,j (V

Θ(ti+1,Ri+1,Xi+1)−V Θ(ti,Ri,Xi)), j = 0,1,2

Compute ∆θg,j =
∑

iC
2
i (Θ,ψ, ξ)∂θg,j (g

Θ(ti+1,Ri+1,Xi+1)− gΘ(ti,Ri,Xi)), j = 0,1,2

Update θV,j← θV,j −α∆θV,j

Update θg,j← θg,j −α∆θg,j

Policy Update Procedure

Compute the TD error C1
i (Θ,ψ, ξ) with new Θ and

C̃1
i (Θ, ψ̃, ξ̃) =

V Θ(ti+1, R̃i+1,Xi+1)−V Θ(ti,Ri,Xi)

∆t

+ γgΘ(ti,Ri,Xi)
gΘ(ti+1, R̃i+1,Xi+1)− gΘ(ti,Ri,Xi)

∆t

− γ
2

(gΘ)2(ti+1, R̃i+1,Xi+1)− (gΘ)2(ti,Ri,Xi)

∆t
+λH(πψ̃,ξ̃ti

).

∆ψ=
∑N−1

i=0
∆1,i

κ
(C̃1

i (Θ, ψ̃, ξ̃)−C1
i (Θ,ψ, ξ))

∆ξ =
∑N−1

i=0
∆2,i

κ
(C̃1

i (Θ, ψ̃, ξ̃)−C1
i (Θ,ψ, ξ))
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Update ψ, ξ with ∆ψ and ∆ξ by Adam algorithm

end for

6. Numerical Results

Now we conduct numerical experiments with simulated data to demonstrate our algorithm. As a

special case of the Gaussian mean return model, the numerical results under Black-Scholes model

are illustrated in E-Companion EC.2.

6.1. Gaussian Mean Return Model

We use the parameters estimated in Wachter (2002): ρ = −0.93, r = 0.017, σ = 0.15, X0 = X̄ =

0.273, ι = 0.27, and ν = 0.065 to generate data. For the algorithm, we set T = 1, ∆t = 1
250
, α =

0.001, M = 50000 and γ = 2. For the hyper-parameters in the Adam method, we use the values

recommended by Kingma and Ba (2014). The parametrized value function p(θ, t) is chosen to be

p(θ, t) = θ0 + θ1t+ θ2t
2. (25)

The parametrized function W of the strategy is chosen to be

W (ψ,T − t,X) =ψ1

e2ψ2(T−t)− 1

(ψ3 +ψ2)(eψ2(T−t)− 1) + 2q
x+ψ4x

+ψ5

(eψ2(T−t)− 1)2

ψ2[(ψ3 +ψ2)(e2ψ2(T−t)− 1)− 2ψ2]

(26)

with ψ = (ψ1,ψ2,ψ3,ψ4,ψ5). Note that, for ψ∗ = (ψ∗1 ,ψ
∗
2 ,ψ

∗
3 ,ψ

∗
4 ,ψ

∗
5) = (C1, q, b,

1
(1+γ)σ

,C2) with the

coefficients given in Proposition 1, W (ψ∗, T − t,X) is the theoretical true equilibrium strategy.

Moreover, due to the terminal condition in (14) and (15), we further require that θV,i0 = 0, θg,i0 = 0

for i= 0,1,2. The initial values for parameters of value functions are all set to be 0. As we have

proved in Section 4, the convergence is guaranteed when the initial value of ψ is properly chosen.

The initial value are chosen as ψ1 = ψ3 = ψ5 = 0 and ψ2 = 1
1+γ

. The parameter ψ4 is important,

which is associated with the corresponding myopic strategy. Observe that its true value ψ∗4 = 1
(1+γ)σ

,

while the optimal value of ξ is ξ∗ = 1
(1+γ)σ2

. Thus, the relation between these two optimal values

is ψ∗4 =
√
ξ∗√

1+γ
. This motivates us to introduce a pre-training stage to get a good initial value of
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ψ4. In the pre-training stage, we initialize ψ4 = 4
1+γ

and iterate for 25000 steps. Then, we obtain

the trained optimal parameter ξ̃. After the pre-training stage, we start the training with initial

value for ψ4 as

√
ξ̃√

1+γ
. We use M = 50000 sample paths to train the model and pick up 25000 paths

randomly for the pre-train stage. To eliminate the noises introduced by the algorithm, we train

the model for 5 times with the same but shuffled dataset starting with the same initial value. At

last, we use the average parameters as our final result. Furthermore, to see whether the algorithm

is stable or not, we conduct the experiment for five times. For each time, M = 50000 sample paths

are generated for the training.

In Figure 1(a), we plot the mean value of the proportion invested in the risky asset for the

strategy when market state X = X̄ = 0.273 at the current moment. Overall, the output of our

algorithm is very close to the theoretical value.

(a) Perfect observation of X (b) Noisy observation of X

Figure 1 The strategy calculated by our algorithm at different time when X = X̄ versus the the-

oretical solution. Panel (a) is computed given perfect observation of market state X, while Panel

(b) is computed by assuming we have a noisy observation of X. In this example, the data is simu-

lated with parameters ρ= −0.93, r= 0.017, σ = 0.15, X0 = X̄ = 0.273, ι= 0.27, and ν = 0.065, T = 1,

∆t= 1
250

, α= 0.001, M = 50000, γ = 2, and we fix λ= 0.1. In panel (b), the noise in the observation of

X has standard deviation 0.05.

To further compare the learned strategy with the true strategy, we consider the relative error

between them for different (t, x). We choose ti = iT
N

and Xj = X̄+j ∗0.01 with i= 0,1,2, ...,N = 250
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and j = 0,±1,±2, ...,±10. Then, for a parameter ψ, the average relative error is defined as

Relative error =
1

21(N + 1)

∑
i,j

|W (ψ,T − ti,Xj)−W (ψ∗, T − ti,Xj)|
|W (ψ∗, T − ti,Xj)|

.

Table 1 shows the average relative error for the five experiments. It reflects the average error

across all time steps and all possible state variables. If we average the strategy learned from five

experiments, we shall reduce the test error since the noise in the algorithm is canceled out.

6.2. Noisy Market State

To test whether our algorithm is stable with noise, we consider the case that the true value of

market state X cannot be measured accurately and what the investor observes is a noise data, i.e.

the true value plus a random noise. To simulate this scenario, we adjust the market simulator in

the following way. At time ti, the market state and return still evolve as in (20). But, the simulator

will not generate the true value Xi directly. Instead, it returns the noise value X̃i defined as

X̃i =Xi + 0.05 ∗ εi,

where εi is an i.i.d. random variable drawn from a standard normal distribution. Note that the

value of Xi will be close to X̄ = 0.273. Thus, the noise added is not negligible. This setting mimics

the case where investors may infer the market price of risk from other data with estimation error.

We apply our algorithm for this case with the same hyper parameters and initialization as before.

We also train our model in five experiments for different values of λ. To compare the learned

strategy with the theoretical one, we plot the proportion for investment when X = X̄ in Figure

1(b). Clearly, the deviation of our strategy from the theoretical one increases compared to the

case with perfect observation. Moreover, we notice that error would increase more significantly

as the investment horizon grows, which may be attributed to the fact that the observation noise

accumulates with time.

The relative error over all periods and all states of the learned strategy is shown in Table 1.

It almost doubles the error under perfect observation. More importantly, a noisy observation in

Electronic copy available at: https://ssrn.com/abstract=3770818



Dai, Dong, and Jia: Learning Equilibrium MV Strategy
; 27

market state creates a new source of error that cannot be easily eliminated by simple average.

Despite that, the overall error is around 3% and remains acceptable.

Table 1 Relative error for our strategies against the theoretical value. In this example, the data is

simulated with parameters ρ= −0.93, r= 0.017, σ= 0.15, X0 = X̄ = 0.273, ι= 0.27, and ν = 0.065, T = 1,

∆t= 1
250

, α= 0.001, M = 50000, γ = 2, and we fix λ= 0.1. In left column, the noise in the observation of X has

standard deviation 0.05.

Perfect observation of X Noisy observation of X

Experiment 0 1.47% 2.21%

Experiment 1 1.59% 1.46%

Experiment 2 1.20% 4.04%

Experiment 3 1.47% 3.66%

Experiment 4 0.53% 5.31%

Average Strategy 0.35% 2.73%

7. Conclusions

Inspired by Dai et al. (2020) and Wang et al. (2019), we incorporate an entropy-regularizer into a

dynamic mean-variance criterion for portfolio’s log return, in order to learn an equilibrium mean-

variance strategy in terms of the reinforcement learning technique. Under an incomplete market

setting, we obtain a semi-analytical, exploratory, equilibrium mean-variance strategy that turns

out to follow a Gaussian distribution.

For algorithm design and implementation, we focus on a Gaussian mean return model for which

a closed-form, exploratory, equilibrium mean-variance strategy is available. To find the equilibrium

strategy using reinforcement learning, we design a policy iteration procedure with a thoroughly

selected initial guess such that the iteration policies possess the same structure as the targeted

equilibrium strategy. It should be highlighted that dynamic programming principle fails with an

equilibrium solution and the corresponding policy updates may not improve the original policy.

However, we are still able to prove the convergence of our algorithm under mild conditions, thanks
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to a thorough design of the policy iteration procedure. Numerical experiments are given to demon-

strate our algorithm.

There are some open questions along this direction, such as the algorithm design for a general

incomplete markets, how to incorporate transaction costs into this framework, an empirical study

of our algorithm, etc. We will leave them for future study.

Endnotes

1. Recently, He and Jiang (2019) study an equilibrium strategy for a constrained mean-variance

formulation.

2. Time-inconsistency is a broad issue widely discussed in economics and decision science; see

Strotz (1955).

3. From this angle, the unique Brownian motion discussed in the exploratory formulation of Wang

et al. (2019) is different from the original Brownian motion.

4. It is also known as the temperature constant that measures the trade-off between exploitation

and exploration.

5. To further illustrate the difference of the variance term between the pre-committed strategy

and the equilibrium strategy under the exploration framework, we consider the same objective

function and control variables in E-Companion EC.3 and we also find that the equilibrium policy

has a constant variance.

6. In the stochastic control literature, only the expectation of the payoff function associated with

the optimal policy is called the “value function”. However, we follow the convention in RL literature

to call the expectation associated with any policy the “value function”, and use a superscript to

indicate the policy.

7. This operator is known as the “infinitesimal generator”. An infinitesimal generator associated

with a controlled process Rπ
t under the policy π and initial state Rπ

0 =R is an operator Aπ such

that ϕ(Rπ
t )−ϕ(R)−

∫ t
0

∫
RA

u
sϕ(Rπ

s )πs(du)ds is a martingale for any smooth ϕ. We often omit the

subscript t and denote this operator by Au or Aπ when it does not cause any confusion.
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8. In fact, there is a large body of literature in finance investigating the predictability of stock

returns, e.g. Ang and Bekaert (2007) and Cochrane (2008). They provide comprehensive examina-

tions of several factors that can be regraded as a proxy for our state variable X. In our framework,

since we allow X to be a stochastic process, it characterizes the noise and limited predictability

of the observed factors. Wachter (2002) also justifies the Gaussian mean return model by claim-

ing that the dividend-price ratio used in Campbell and Viceira (1999) and Barberis (2000) is a

commonly used factor.

9. Even though one can show that the minimizer of the above accumulative square loss is not

consistent with our desired function, it is still adopted in some RL literature in the continuous-time

setup (e.g. Doya (2000) and Wang and Zhou (2020)).
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E-Companion of Learning Equilibrium Mean-Variance
Strategy

EC.1. Design for Time-decaying Exploration

In order to induce a time-decaying variance in our framework, one natural choice is to provide a

time-decaying reward for exploration. For example, the objective functional (5) can be modified

as:

J(t,Rt,Xt;π) :=Et
[
Rπ
T +λ

∫ T

t

e−δsH(πs)ds

]
− γ

2
Vart [R

π
T ] , (EC.1)

where a discount factor e−δ(s−t) is introduced so that the future exploration will be rewarded less.

δ≥ 0 captures the rate of decay in the variance term. When δ= 0, it reduces to (5) .

Under the Black-Scholes model, the equilibrium strategy now becomes

π∗t ∼N
( µ− r

(1 + γ)σ2
,

λ

(1 + γ)σ2
e−δt

)
. (EC.2)

And for the general model we discussed, we have that

π∗(t,X)∼N
(µ(t,X)− r− ργσ(t,X)ν(t,X)∂Xh

∗(t,X)

(1 + γ)σ2(t,X)
,

λ

(1 + γ)σ2(t,X)
e−δt

)
. (EC.3)

The proof about the above conclusions will be parallel to the case δ= 0 in EC.2 and EC.5, and

hence will be omitted.

EC.2. Black-Scholes Model

In this section, we consider the complete market case with constant market parameters, i.e. µt ≡

ν,σt ≡ σ. The entropy regularized portfolio choice problem with objective functional (5) yields a

closed form solution in the complete market as follows.

Proposition EC.1. Under the complete market setting with constant market parameters, an equi-

librium strategy is given by

π∗t ∼N
( µ− r

(1 + γ)σ2
,

λ

(1 + γ)σ2

)
. (EC.4)
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Proof of Proposition EC.1 For any deterministic strategy π, we can get that

Et [RT ] =Rt +

∫ T

t

r+ (µ− r)
∫
R
uπ∗s(du)− 1

2

∫
R
u2π∗s(du)ds

and Vart [RT ] =
∫ T
t
σ2
∫
R u

2πs(du)ds. Since both π∗ defined in (EC.4) and its perturbation πh,v are

deterministic, we shall have that

J(t,Xt,Rt;π
h,v) =J(t,Xt,Rt;π

∗)−
∫ t+h

t

(
r+ (µ− r)

∫
R
uπ∗s(du)− 1 + γ

2

∫
R
u2π∗s(du) +λH(π∗s)

)
ds

+

∫ t+h

t

(
r+ (µ− r)

∫
R
uv(du)− 1 + γ

2

∫
R
u2v(du) +λH(v)

)
ds.

Then, it holds that

lim inf
h→0+

J(t,Rt,Xt;π
∗)−J(t,Rt,Xt;π

h,v)

h

=(µ− r)
∫
R
uπ∗t (du)− 1 + γ

2

∫
R
u2π∗t (du) +λH(π∗t )−

(
(µ− r)

∫
R
uv(du)− 1 + γ

2

∫
R
u2v(du) +λH(v)

)
The conclusion of the theorem can be deduced from two facts. One is that of all probability

distribution over the reals with a specific mean α and variance β, the normal distribution is the one

with the maximal entropy which equals to 1
2

log(2πeβ). The other is that (α̂, β̂) = ( µ−r
(1+γ)σ2

, λ
(1+γ)σ2

)

attains the maxima of the function (µ− r)α− 1+γ
2
σ2(α2 +β) + λ

2
log(2πeβ). �

A remarkable feature of the derived equilibrium strategy is that its mean coincides with that of

the original, non-exploratory problem (see Dai et al. (2020)), whereas the temperature parameter

λ and the volatility σ determine the variance. For fixed λ, the smaller the volatility the bigger

the variance of the equilibrium strategy. It seems not natural at first glance, since intuitively, less

exploration is needed when the market noise is small. But, from the dB̄t term in (4), we see that,

for the equilibrium strategy, the overall variance introduced by the exploration into the system is

constant independent of the value of volatility. In other words, the exploration is constant regardless

of the market.

We now test our algorithm with simulated data. In the numerical experiment, we set µ= 0.1,

σ = 0.3, r = 0.017, and γ = 2. For the algorithm, we set T = 1, ∆t= 1
250
, α= 0.001, M = 50000.

And λ is taken as 0, 0.1, 1 to examine the impact of exploration level. As shown in Appendix

EC.2, the equilibrium policy is

π∗t ∼N
( µ− r

(1 + γ)σ2
,

λ

(1 + γ)σ2

)
.
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From the previous analysis, we parametrize the strategy and value function as

πψ,ξ ∼N(ψ, ξ2), V (t,R) =R+ θV (T − t), g(t,R) =R+ θg(T − t).

We use 20000 paths as training samples and another 10000 path to get the empirical distribution

of the terminal log-return for the obtained strategy as testing samples. We repeat the learning

procedure 5 times and also compare the learned strategy with the true strategy.

The result is presented in Figure EC.1. Roughly speaking, the log-returns under our strategy

are distributed similar to that under the theoretical equilibrium strategy. Left and right tails are

symmetric and have similar rates of decay as a Gaussian distribution. It implies that our method

could approximate theoretical solution accurately.

To further illustrate the result, we present the mean and standard deviation of the proportion

ψ for different values of λ in Table EC.1. We can see that the mean of the proportion of wealth

invested in stocks is very close to the theoretical value and the standard deviation of the mean value

(not the standard deviation in the exploration) is very small, which demonstrates the convergence

of our algorithm.

(a) λ= 0 (b) λ= 0.1 (c) λ= 1

Figure EC.1 The histogram of the log-return of the portfolio under the strategy according to our

algorithm when the stock price is generated based on the Black-Scholes model with different values

of exploration parameter λ. Other parameters are taken as µ= 0.1, σ = 0.3, r = 0.017, and γ = 2,

T = 1, ∆t= 1
250

, α= 0.001, M = 50000.
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Table EC.1 Sample average and standard deviation of the mean value of the policy generated by

our algorithm. Other parameters are taken as µ= 0.1, σ= 0.3, r= 0.017, and γ = 2, T = 1,

∆t= 1
250

, α= 0.001, M = 50000.

Exploration Parameter Mean of ψ Standard Deviation of ψ

λ= 0 0.321 0.030

λ= 0.1 0.296 0.025

λ= 1 0.292 0.033

Theoretical Value of ψ= µ−r
(1+γ)σ2

= 0.296

EC.3. Comparison between the Pre-committed Policy and the Equilibrium
Policy

To shed some light on the difference between the pre-committed policy and the equilibrium in the

exploratory framework, we adopt the same setting and objective functional as in Wang and Zhou

(2020) to make comparison, especially the difference in the exploratory aspect (variance).

We use the same control variables and state process the discounted wealth process W̄t = e−rtWt

as Wang and Zhou (2020). The control policy is denoted by π that stands for the distribution of

the discounted wealth invested in stocks. More specifically, if the realization of the control policy

is denoted by ut, then

dW̄ u
t = (µ− r)utdt+σutdBt.

And the equivalent exploratory dynamics is

dW̄ π
t = (µ− r)

∫
R
uπt(u)dudt+σ

√∫
R
u2πt(u)dudBt.

The objective functional is

Et[W̄ π
T ]− γ

2
V art[W̄

π
T ],

In Wang and Zhou (2020), they adopt a constrained formulation of the mean variance problem.

However, it is well know that for the Black-Scholes model, two formulations are equivalent (Zhou
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and Li 2000, Dai et al. 2020). Recall that the pre-committed strategy in Wang and Zhou (2020) is

given by

π∗pre−committed =N
(
− µ− r

σ2
(w̄− c), λ

2σ2
e

(µ−r)2

σ2
(T−t)

)
,

where c is a constant depending on model primitives and the risk aversion parameter.

On the other hand, the next proposition shows that the equilibrium policy is given by

π∗equilibrium =N
(µ− r
γσ2

,
λ

γσ2

)
. (EC.5)

Proposition EC.2. The control policy in (EC.5) is an equilibrium policy.

Proof of Proposition EC.2 It suffices to verify the definition.

First, under the policy (EC.5), W̄
π∗equilibrium
t is a Gaussian process, with

Et
[
W̄

π∗equilibrium
t

]
= W̄ +

(µ− r)2

γσ2
(T − t), V art

[
W̄

π∗equilibrium
t

]
= (

(µ− r)2

γ2σ2
+
λ

γ
)(T − t).

If a different strategy π is applied during [t, t+h), then the objective functional becomes

J(t, W̄ , πh) =Et
[
W̄ π
t+h +

(µ− r)2

γσ2
(T − t−h) +λhH(π) +

λ

2
(T − t−h) log

2πeλ

γσ2

]
− γ

2
V art[W̄

π
t+h]− γ

2
(
(µ− r)2

γ2σ2
+
λ

γ
)(T − t−h)

Therefore,

J(t, W̄ , πh)−J(t, W̄ , π∗equilibrium)

=Et
[
W̄ π
t+h− W̄t +λhH(π)

]
− γ

2
V art[W̄

π
t+h]− (µ− r)2

γσ2
h− λh

2
log

2πeλ

γσ2
+
γ

2
(
(µ− r)2

γ2σ2
+
λ

γ
)h

=h[(µ− r)
∫
R
uπ(u)du+λH(π)]− γhσ

2

2

∫
R
u2π(u)du

− (µ− r)2

γσ2
h− λh

2
log

2πeλ

γσ2
+
γ

2
(
(µ− r)2

γ2σ2
+
λ

γ
)h+ o(h)

≤h[(µ− r)m1 +
λ

2
log 2πem2−

γσ2

2
(m2

1 +m2)]

−h[
(µ− r)2

γσ2
− λ

2
log

2πeλ

γσ2
+
γ

2
(
(µ− r)2

γ2σ2
+
λ

γ
)] + o(h)≤ o(h),

where m1,m2 are introduced to denote the first and the second moment of the distribution π. The

last inequality is because as a function of m1,m2, it achieves the maximum value at m∗1 = µ−r
γσ2

, and

m2 = λ
γσ2

. �
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We realize that under the same setting (the same model and the same objective function), two

solution concepts lead to different solutions. The mean of each policies coincides with its non-

exploratory counterpart (Wang and Zhou 2020, Basak and Chabakauri 2010) and the difference in

that part has been well understood. While we also identify very different patterns in exploratory

variance. The variance of the pre-committed strategy decays in time, on the contrary, the variance

of the equilibrium strategy remains a constant. The constant or non-decaying variance also appears

in the equilibrium solution under other objective functions (log-MV) and other models (Gaussian

mean return model). This finding complements our discussions in Section 3 and it seems that this

is a feature of equilibrium solution and provides a new aspect to understand the difference between

two solution concepts.

EC.4. Stochastic Volatility Model

In this part, we consider a general stochastic volatility model, where the instantaneous volatility

is σ(t, x) = x
1
2α . This term can be taken, for example, from the implied volatility from the option

price as a natural proxy. The rest of the model is specified as:

µ(t, x) = r+ δx
1+α
2α , σ(t, x) = x

1
2α ,m(t, x) = ι(x̄−x) and ν(t, x) = ν̄

√
x.

In this case, we shall have θ(t, x) = δx
1
2 . Applying Theorem 1, we may prove the following

proposition about the theoretical equilibrium policy for this model.

Proposition EC.3. An equilibrium for the stochastic volatility model is:

π∗(t,X,R)∼N
( δ

1 + γ
X

α−1
2α − γρν̄

(1 + γ)
a1(t)X

α−1
2α ,

λ

(1 + γ)X
1
α

)
,

where

a1(t) =−(1 + 2γ)δ2

(1 + γ)2

e2C3(T−t)− 1

(C3 +C4)(e2C1(T−t)− 1) + 2C3

,

with C3 = 1
1+γ

[γ2(ι+ ρν̄δ)2 + ι2(2γ+ 1)]
1
2 and C4 = ι+ γ2ρδν̄

(1+γ)2
.

Moreover, the associated value function has the form of

g∗(t,R,X) =R+ a1(t)X + a2(t), V ∗(t,R,X) =R+U∗(t,X),
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where a0(t) is the solution to the ODE a′0(t) + ιx̄a1(t) − λ
2(1+γ)

+ r = 0, with terminal condition

a0(T ) = 0; U∗(t,X) satisfies (10) but does not admit a closed-form solution.

Proof of Proposition EC.3 As an application of Theorem 1, it suffices to verify that (8) admits

a solution h∗(t,X) = a1(t)X + a0(t). It can be done by direct calculation. �

EC.5. The PDE Characterization of Value Functions

To proceed with the PDE approach, we shall have the following verification theorem under the

following regularity condition.

Assumption EC.1. (i) µ(·, ·), σ(·, ·), m(·, ·) and ν(·, ·) are continuous functions;

(ii) µ,σ are polynomial growth with respect to X and m,ν are linear growth with respect to x, i.e.

there exist positive constants C and p such that

|µ(t,X)|, |σ(t,X)| ≤C(1 + |X|p),

and

|m(t,X)|, |ν(t,X)| ≤C(1 + |X|).

Theorem EC.1. Suppose V ∗(t,R,X) =R+U∗(t,X) and g∗(t,R,X) =R+ h∗(t,X) are the clas-

sical solutions to the extended HJB system (14) and (15)., with the equilibrium condition (17),

where If U∗, g∗ and their derivatives have polynomial growth with respect to x, and Assumption

EC.1 holds true.

Then the feedback strategy π∗ defined by

π∗(t,X)∼N
(µ(t,X)− r− ργσ(t,X)ν(t,X)∂Xh

∗(t,X)

(1 + γ)σ2(t,X)
,

λ

(1 + γ)σ2(t,X)

)
, (EC.6)

is an equilibrium strategy. In particular h∗ solves (8) and (10).

Proof of Theorem EC.1 We make the ansatz that V ∗(t,R,X) =R+U∗(t,X) and g∗(t,R,X) =

R+h∗(t,X). Then, the above equations can be further simplified as

∂tU
∗+m(t, x)∂XU

∗+
1

2
ν2(t,X)∂XXU

∗+

[
r+ (µ(t,X)− r)

∫
R
uπ∗(du)− 1

2
σ2(t,X)

∫
R
u2π∗(du)

]
− γ

[
1

2
σ2(t,X)

∫
R
u2π∗(du) + ρν(t,X)σ(t,X)∂Xg

∫
R
uπ∗(du) +

1

2
ν2(t, x)|∂Xg∗|2

]
+λH(π∗) = 0,

(EC.7)
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∂th
∗+m(t, x)∂Xh

∗+
1

2
ν2(t,X)∂XXh

∗+

[
r+ (µ(t,X)− r)

∫
R
uπ∗(du)− 1

2
σ2(t,X)

∫
R
u2π∗(du)

]
= 0,

(EC.8)

with U∗(T,X) = 0, h∗(T,X) = 0, and

π∗(t, x) = argmax
π∈P(R)

{
(µ(t,X)− r)

∫
R
uπ(du)− 1

2
σ2(t,X)

∫
R
u2π(du)

− γ
[

1

2
σ2(t,X)

∫
R
u2π(du) + ρν(t,X)σ(t,X)∂Xh

∗
∫
R
uπ(du)

]
+λH(π)

}
.

(EC.9)

Note that, on the right hand side of (EC.9), except the entropy term, other terms only depend

on π through the first and second moment
∫
R uπ(du) and

∫
R u

2π(du). From Cover and Thomas

(2012), we know that, of all the probability distributions over the reals with a specified mean and

variance, normal distribution is the one with the maximal entropy. Hence, π∗ should be a normal

distribution. Choosing its mean and variance to maximize the right hand side of (EC.9), we have

that (EC.6).

The proof consists of two steps:

• We first prove that V ∗(t,R,X) :=R+U∗(t,X) and g∗(T,R,X) :=R+h∗(t,X) are the desired

functions, i.e. V ∗(t,R,X) = J(t,R,X;π∗) and g∗(t,R,X) =Et
[
Rπ∗
T |Rt =R,Xt =X

]
;

• In the second step, we show that π∗ is the equilibrium strategy.

First note that, since µ,m are linear growth with respect to x, we have, for any p > 1, there exists

a constant Cp such that

E
[

sup
0≤t≤T

|Xt|p
]
≤Cp|X0|p.

From (8), applying Itô formula to g∗(t,Rπ∗
t ,Xt), we have

dg∗(t,Rπ∗

t ,Xt) =(∂t +Aπ
∗

t )g∗dt+ ν∂xg
∗[ρdBs +

√
1− ρ2dB̃s]

+σ(s,Xs)

[∫
uπ∗t (du)dBs +

√∫
R
u2π∗s(du)− (

∫
R
uπ∗s(du))2dB̄s

]
Since g∗ satisfying the extended HJB equation, the dt term on the right hand side of above equation

is identical to zero. Moreover, from the growth condition on the coefficients and g∗, it follows that
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g∗(t,Rπ∗
t ,Xt) is a martingale. So, by the boundary condition of g∗, it is the expectation function

of π∗. Combining (14) and (15), we have that

(∂t +Aπ
∗

t )V ∗− γ
2

(∂t +Aπ
∗

t )g2 +λH(π∗t ) = 0.

Using Itô formula and the boundary condition of V ∗, we have

V ∗(t,Rt,Xt) =Et
[
Rπ∗

T +λ

∫ T

t

H(π∗s)ds

]
− γ

2
Et
[∫ T

t

(∂s +Aπ
∗

s )(g∗)2ds

]
=Et

[
Rπ∗

T +λ

∫ T

t

H(π∗s)ds

]
− γ

2
((g∗)2(T,Rπ∗

T ,XT )− (g∗)2(t,Rt,Xt))

=Et
[
Rπ∗

T +λ

∫ T

t

H(π∗s)ds

]
− γ

2
Vart

[
Rπ∗

T

]
,

where the last equality is obtained due the fact that g∗ is the expectation of the terminal log-return.

Now we are going to show that π∗ is an equilibrium strategy. At time t, given any h ∈R+ and

v ∈P(R), consider the perturbation strategy πh,v as defined in Definition 2. Note that

Vart

[
Rπh,v

T

]
=Et

[
Vart+h

[
Rπh,v

T

]]
+ Vart

[
Et+h

[
Rπh,v

T

]]
Since πh,vs = π∗s for s ∈ [t + h,T ], we have Vart+h

[
Rπh,v

T

]
= Vart+h

[
Rπ∗
T

]
and Et+h

[
Rπh,v

T

]
=

Et+h
[
Rπ∗
T

]
= g(t+h,Rπh,v

t+h ,Xt+h). Thus,

J(t,Rt,Xt;π
h,v) =Et

[
Rπh,v

T +λ

∫ T

t

H(πh,vs )ds

]
− γ

2
Vart

[
Rπh,v

T

]
=Et

[
λ

∫ t+h

t

H(πh,vs )ds

]
+Et

[
Et+h

[
Rπh,v

T +λ

∫ T

t+h

H(πh,vs )ds

]]
− γ

2

(
Et
[
Vart+h

[
Rπh,v

T

]]
+ Vart

[
Et+h

[
Rπh,v

T

]])
=Et

[
V ∗(t+h,Rπh,v

t+h ,Xt+h) +λ

∫ t+h

t

H(πh,vs )ds

]
− γ

2
Vart

[
g∗(t+h,Rπh,v

t+h ,Xt+h)
]
.

Applying Itô formula to V ∗(s,Rπh,v

s ,Xs), we see that

Et
[
V ∗(t+h,Rπh,v

t+h ,Xt+h) +λ

∫ t+h

t

H(πh,vs )ds

]
= V ∗(t,Rt,Xt) +Et

[∫ t+h

t

(∂s +Av)V ∗+λH(v)ds

]
From (14) and the optimality condition (17) of π, we have

Et
[
V ∗(t+h,Rπh,v

t+h ,Xt+h) +λ

∫ t+h

t

H(πh,vs )ds

]
≤V ∗(t,Rt,Xt)−

γ

2
Et
[∫ t+h

t

(2g∗Avg∗−Av(g∗)2)(s,Rπh,v

s ,Xs)ds

]
=V ∗(t,Rt,Xt)−

γ

2
Et
[∫ t+h

t

(2g∗∂sg
∗+ 2g∗Avg∗− ∂s(g∗)2−Au(g∗)2)(s,Rπh,v

s ,Xs)ds

]
.
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Furthermore, it holds that

Et
[∫ t+h

t

(∂s(g
∗)2 +Av(g∗)2)(s,Rπh,v

s ,Xs)ds

]
=Et

[
(g∗)2(t+h,Rπh,v

t+h ,Xt+h)
]
− (g∗)2(t,Rt,Xt)

and

Et
[∫ t+h

t

(g∗∂sg
∗+ g∗Avg∗)(s,Rπh,v

s ,Xs)ds

]
=g∗(t,Rt,Xt)Et

[∫ t+h

t

(∂sg
∗+Avg∗)(s,Rπh,v

s ,Xs)ds

]
+ I

with

I =E
[∫ t+h

t

(g∗(s,Rs,Xs)− g∗(t,Rs,Xs))(∂sg
∗+Avg∗)(s,Rπh,v

s ,Xs)ds

]
.

Hölder inequality yields that

|I|2 ≤
(
E
[∫ t+h

t

(g∗(s,Rs,Xs)− g∗(t,Rs,Xs))
2ds

])1/2(
E
[∫ t+h

t

((∂sg
∗+Avg∗)(s,Rπh,v

s ,Xs))
2ds

])1/2

.

It further implies that I = o(h). Then, we have

Et
[
V ∗(t+h,Rπh,v

t+h ,Xt+h) +λ

∫ t+h

t

H(πh,vs )ds

]
≤V ∗(t,Rt,Xt) +

γ

2

(
Et
[
g∗(t+h,Rπh,v

t+h ,Xt+h)2
]
− (g∗)2(t,Rt,Xt)

− 2g∗(t,Rt,Xt)Et
[∫ t+h

t

(∂sg
∗+Avg∗)(s,Rπh,v

s ,Xs)ds

])
+ o(h)

(EC.10)

On the other hand,

Vart

[
g∗(t+h,Rπh,v

t+h ,Xt+h)
]

=Et
[
g∗(t+h,Rπh,v

t+h ,Xt+h)2
]
−
(
Et
[
g∗(t+h,Rπh,v

t+h ,Xt+h)
])2

.

We also have

Et

[
g∗(t+h,Rπh,v

t+h ,Xt+h)
]

= g∗(t,Rt,Xt) +Et
[∫ t+h

t

(∂sg
∗+Avg∗)(s,Rπh,v

s ,Xs)ds

]
.

Thus, (
Et
[
g∗(t+h,Rπh,v

t+h ,Xt+h)
])2

=(g∗)2(t,Rt,Xt) + 2g∗(t,Rt,Xt)Et
[∫ t+h

t

(∂sg
∗+Avg∗)(s,Rπh,v

s ,Xs)ds

]
+

(
Et
[∫ t+h

t

(∂sg+Avg∗)(s,Rπh,v

s ,Xs)ds

])2

=(g∗)2(t,Rt,Xt) + 2g∗(t,Rt,Xt)Et
[∫ t+h

t

(∂sg
∗+Avg∗)(s,Rπh,v

s ,Xs)ds

]
+ o(h).
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This implies that

Vart

[
g∗(t+h,Rπh,v

t+h ,Xt+h)
]

=Et
[
g∗(t+h,Rπh,v

t+h ,Xt+h)2
]
− (g∗)2(t,Rt,Xt)

− 2g∗(t,Rt,Xt)Et
[∫ t+h

t

(∂sg
∗+Avg∗)(s,Rπh,v

s ,Xs)ds

]
+ o(h)

Combining this with (EC.10), we shall have

J(t,Rt,Xt;π
h,v)≤ V ∗(t,Rt,Xt) + o(h),

which indicates that π∗ is an equilibrium strategy. �

In addition, as a side product of Theorem EC.1, we have the following corollary that characterizes

the value function and expectation function under any strategy.

Corollary EC.1. Under Assumption EC.1, for any given admissible strategy π, the related value

function V π and the expectation function gπ satisfy PDE system (14) and (15).

The proof of Corollary EC.1 is parallel to one step in the proof of Theorem EC.1 and hence is

omitted. We would like to emphasis that this result is crucial for the design of the algorithm, as

we need to evaluate any policy, which is equivalent to solve (14). and (15) for any given strategy

π.

EC.6. Proof of Statements

EC.6.1. Proof of Theorem 1

Proof of Theorem 1 (i) From the assumption of the theorem, we see that BSDE (7) admits a

unique solution (Y,Z). Consider the strategy π∗ defined by (6). One can verify that it is admissible.

The related log-return process is denoted as R∗. Direct computation shows that

Yt =Et
[∫ T

t

f(s,Xs,Zs)ds

]
=E [R∗T −R∗t ] .

Electronic copy available at: https://ssrn.com/abstract=3770818



ec12 e-companion to Dai, Dong, and Jia: Learning Equilibrium MV Strategy

For any local perturbation, πh,vs = π∗s1s/∈[t,t+h) +v1s∈[t,t+h), denote the related log-return process by

Rh,v. Then, Rh,v
T −R

h,v
t+h =R∗T −R∗t+h, which implies that Et+h

[
Rh,v
T

]
=Rh,v

t+h +Yt+h. It follows that

J(t,Xt,Rt;π
h,v)

=Et

[
Rh,v
T +

∫ T

t

λH(πh,v)

]
− γ

2
Vart

[
Rh,v
T

]
=Et

[
Et+h

[
Rh,v
T

]
− γ

2
Vart+h

[
Rh,v
T

]]
− γ

2
Vart

[
Et+h

[
Rh,v
T

]]
+Et

[∫ T

t

λH(πh,vs )ds

]
=Et

[
Rh,v
t+h +Yt+h−

γ

2
Vart+h

[
Rh,v
T −R

h,v
t+h

]]
− γ

2
Vart

[
Rh,v
t+h +Yt+h

]
+Et

[∫ T

t

λH(πh,vs )ds

]
=Et

[
R∗t+h +Yt+h−

γ

2
Vart+h

[
R∗T −R∗t+h

]]
− γ

2
Vart

[
Rh,v
t+h +Yt+h

]
+Et

[
Rh,v
t+h−R∗t+h

]
+Et

[∫ T

t

λH(πh,vs )ds

]
=J(t,Xt,Rt;π

∗) +Et
[
Rh,v
t+h−R∗t+h

]
+Et

[∫ t+h

t

λH(v)−λH(π∗s)ds

]
− γ

2
Vart

[
Rh,v
t+h +Yt+h

]
+
γ

2
Vart

[
R∗t+h +Yt+h

]
.

Note that

Rh,v
t+h =Rt +

∫ t+h

t

a(s, v)ds+

∫ t+h

t

σs

[∫
uv(du)dBs +

√∫
u2v(du)− (

∫
uv(du))2dB̄s

]
,

with

a(s, v) = r+ (µ(s,Xs)− r)
∫
uv(du)− 1

2
σ2(s,Xs)

∫
u2v(du).

Thus, we have

Et
[
Rh,v
t+h−R∗t+h

]
=Et

[∫ t+h

t

a(s, v)− a(s,π∗s)ds

]
It is not hard to compute that

Vart
[
Rh,v
t+h +Yt+h

]
=Et

[∫ t+h

t

φ(s, v)ds

]
+ o(h),

and

Vart
[
R∗t+h +Yt+h

]
=Et

[∫ t+h

t

φ(s,π∗s)ds

]
+ o(h),

where

φ(s, v) =Z2
s +σ(s,Xs)

∫
u2v(du) + 2ρσ(s,Xs)Zs

∫
uv(du).
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Hence,

lim
h→0

J(t,Xt,Rt;π
h,v)−J(t,Xt,Rt;π

∗)

h
= a(s, v) +φ(s, v) +λH(v)− (a(s,π∗) +φ(s,π∗) +λH(π∗)) .

Finally, we observe that the random functional a(s, ·) + φ(s, ·) + λH(·) is minimized at π∗s . This

implies that π∗ is the equilibrium strategy.

(ii) In this case, the BSDE (7) is Markovian. Hence, we can write h= f(t,X) for a deterministic

function h. If h∈C1,2, we can apply Itô formula to get the desired result.

(iii) Based on the previous argument, we could get that Rπ∗
T =Rπ∗

t +
∫ T
t
α(s,Xs)ds+η(s,Xs)dBs.

Therefore

g∗(t,R,X) =Et[Rπ∗

T |Rπ∗

t =R,Xt =X] =R+Et[
∫ T

t

α(s,Xs)ds+ η(s,Xs)dBs] =R+h∗(t,X),

and

V ∗(t,R,X) =Et[Rπ∗

t +

∫ T

t

α(s,Xs)ds+ η(s,Xs)dBs +λH(π∗s)ds|Rπ∗

t =R,Xt =X]

− γ
2
V art[R

π∗

t +

∫ T

t

α(s,Xs)ds+ η(s,Xs)dBs|Rπ∗

t =R,Xt =X]

=R+Et[
∫ T

t

α(s,Xs)ds+ η(s,Xs)dBs +λH(π∗s)ds]

− γ
2
V art[

∫ T

t

α(s,Xs)ds+ η(s,Xs)dBs]

=R+U∗(t,X),

for some function h∗ and U∗ that only depend on t and X. By taking t= T , we can obtain that

they satisfy the terminal condition h∗(T,X) =U∗(T,X) = 0.

Note that it means Rπ∗
t +h∗(t,Xt) is a martingale, under the equilibrium policy π∗. If h∗ ∈C1,2,

we can apply Itô’s lemma to deduce that h∗ satisfies PDE (8).

Moreover, we can rewrite the above identity as

R+U∗(t,X) =Et[Rπ∗

T +

∫ T

t

λH(πs)ds]−
γ

2
V art[R

π∗

T ]

=Et[Rπ∗

T +U∗(T,XT ) +

∫ T

t

λ

2
log 2πe

λ

(1 + γ)σ2(s,Xs)
ds]− γ

2
V art[R

π∗

T +h∗(T,XT )]

=Et[Rπ∗

T +U∗(T,XT ) +

∫ T

t

λ

2
log 2πe

λ

(1 + γ)σ2(s,Xs)
ds− γ

2
d〈Rπ∗ +h∗〉(s)].
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It means that Rπ∗
t +U∗(t,Xt) +

∫ t
0
λ
2

log 2πe λ
(1+γ)σ2(s,Xs)

ds− γ
2
〈R+ h∗〉(t) is a martingale. If U∗ ∈

C1,2, then we can apply Itô’s lemma to deduce that U∗ satisfies PDE (10). �

EC.6.2. Proof of Proposition 1

Proof of Proposition 1 Applying Theorem 1, we shall have θ(t,X) =X and h∗,U∗ satisfy

∂th
∗+

ν2

2
∂XXh

∗+ ι(X̄ −X)∂Xh
∗+ r− λ

2(1 + γ)
+

1

2
X2− γ2

2(1 + γ)2
(X + ρν∂Xh

∗)2 = 0,

h∗(T,X) = 0,

(EC.11)

and

∂tU
∗+

ν2

2
∂XXU

∗+ ι(X̄ −X)∂XU
∗+ r− 1

2

(X − γρν∂Xh∗)2

(1 + γ)σ
− 1

2
ν2(∂xh

∗)2 +
λ

2

[
log

2πeλ

(1 + γ)σ2
− 1

]
= 0,

U∗(T,X) = 0.

(EC.12)

In this case, h∗(t,X) can be solved as h∗(t,X) = 1
2
a∗2(t)X2 + a∗1(t)X + a∗0(t) with a∗i , i = 1,2,3,

satisfying the following ODEs



ȧ∗2(t) =
γ2ρ2ν2

(1 + γ)2
(a∗2)2(t) + 2(ι+

γ2ρν

(1 + γ)2
)a∗2(t)− 1 + 2γ

(1 + γ)2
, a∗2(T ) = 0,

ȧ∗1(t) = (ι+
γ2ρν

(1 + γ)2
+
γ2ρ2ν2

(1 + γ)2
a∗2(t))a∗1(t)− ιX̄a∗2(t), a∗1(T ) = 0,

ȧ∗0(t) =
γ2ρ2ν2

2(1 + γ)2
(a∗1)2(t)− ιX̄a∗1(t)− 1

2
ν2a∗2(t)− (r− λ

2(1 + γ)
), a∗0(T ) = 0.

(EC.13)

We can explicitly solve these equations. Especially, we have that
a∗2(t) =

(1 + 2γ)

(1 + γ)2

e2C1(T−t)− 1

(C1 +C2)(e2C1(T−t)− 1) + 2C1

,

a∗1(t) =
ιX̄(1 + 2γ)

(1 + γ)2

(eC1(T−t)− 1)2

C1[(C1 +C2)(e2C1(T−t)− 1) + 2C1]
.

where C1 = 1
γ+1

[γ2(ι+ ρν)2 + ι2(2γ+ 1)]
1
2 ,C2 = ι+ γ2ρν

(1+γ)2
. It is exactly the same function obtained

in Dai et al. (2020). Similarly, U∗(t,X) can be also written as U∗(t,X) = 1
2
b∗2(t)X2 + b∗1(t)X+ b∗0(t)
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with b∗i satisfying certain ODEs:

ḃ∗2(t) = 2ιb∗2(t) +
1

2(1 + γ)
(γρνa∗2(t)− 1)2 +

ν2

2
(a∗2)2(t), b∗2(T ) = 0,

ḃ∗1(t) = ιb∗1(t)− ιX̄b∗2(t)− ρν

1 + γ
(1 + γρνa∗2(t))a∗1(t) + ν2a∗1(t)a∗2(t), b∗1(T ) = 0,

ḃ∗0(t) =−ν
2

2
b∗2(t)− ιX̄b∗1(t)− r+

γ2ρ2ν2(a∗1)2(t)

2(1 + γ)
+
ν2

2
a∗1(t) +

λ

2

[
log

2πeλ

(1 + γ)σ2
− 1

]
, b∗0(T ) = 0.

(EC.14)

�

EC.6.3. Proof of Theorem 2

Proof of Proposition 2 We know that the related value function V (0)(t,R,X) := J(t,R,X;π(0))

and the expectation function g(0)(t,R,X) := E
[
Rπ(0)

T |Rt =R,Xt =X
]

can be written as

V (0)(t,R,X) =R+U (0)(t,X) and g(0)(t,R,X) =R+h(0)(t,X) with V (0) and h(0) satisfying

∂th
(0) +

ν2

2
∂XXh

(0)+ι(X̄ −X)∂Xh
(0) + r− λ

2(1 + γ)
+

1

2
X2

− γ2

2(1 + γ)2
(X + ρν[a

(0)
2 (t)X + a

(0)
1 (t)])2 = 0, h(0)(T,X) = 0,

and

∂tU
(0) +

ν2

2
∂XXU

(0) + ι(X̄ −X)∂XU
(0) + r− 1

2

(X − γρν[a
(0)
2 (t)X + a

(0)
1 (t)])2

(1 + γ)

− γρν(∂Xh
(0)− (a

(0)
2 (t)X + a

(0)
1 (t)))(a

(0)
2 (t)X + a

(0)
1 (t))− 1

2
ν2(∂xh

(0))2

+
λ

2
log 2πeθ(0)− 1 + γ

2
σ2θ(0) = 0,U (0)(T,X) = 0.

Furthermore, U (0) and h(0) can be solved as

h(0)(t,X) =
1

2
a

(1)
2 (t)X2 + a

(1)
1 (t)X1 + a(0)(t)

and

U (0)(t,X) =
1

2
b

(1)
2 (t)X2 + b

(1)
1 (t)X1 + b(0)(t)

with a
(1)
i and b

(1)
i satisfying ODEs

ȧ
(1)
2 = 2ιa

(1)
2 +

γ2

(1 + γ)2
(1 + ρνa

(0)
2 (t))2− 1, a

(1)
2 (T ) = 0,

ȧ
(1)
1 = ιa

(1)
1 − ιa

(1)
2 +

γ2ρν

(1 + γ)2
(1 + ρνa

(0)
2 )a

(0)
1 , a

(1)
1 (T ) = 0,

ȧ
(1)
0 =−ιX̄a(1)

1 −
ν2

2
a

(1)
2 − (r− λ

2(1 + γ)
) +

γ2ρ2ν2

2(1 + γ)2
a

(0)
1 , a

(1)
0 (T ) = 0,

Electronic copy available at: https://ssrn.com/abstract=3770818



ec16 e-companion to Dai, Dong, and Jia: Learning Equilibrium MV Strategy

and 

ḃ
(1)
2 =2ιb

(1)
2 +

1

1 + γ
(γρνa

(0)
2 − 1)2− γρν(a

(1)
2 − a

(0)
2 )a

(1)
2 +

ν2

2
a

(1)
2 , b

(1)
2 (T ) = 0,

ḃ
(1)
1 =ιb

(1)
1 − ιX̄b

(1)
2 −

ρν

1 + γ
(1− γρνa0

2)a
(0)
1

+ γρν
[
(a

(1)
1 − a

(0)
1 )a

(1)
2 + (a

(1)
2 − a

(0)
2 )a

(1)
1

]
+ ν2a

(1)
2 a

(1)
1 , b

(1)
1 (T ) = 0,

ḃ
(1)
0 =− ιX̄b(1)

1 −
ν2

2
b

(1)
2 − r+

γ2ρ2ν2(a
(0)
1 )2

2(1 + γ)2
+ γρν(a

(1)
1 − a

(0)
1 )a

(1)
1

+
ν2

2
(a

(1)
1 )2−

[
λ

2
log 2πeθ(0)− 1 + γ

2
σ2θ(0)

]
, b

(1)
0 (T ) = 0.

Next, we update the policy according to optimality condition (17) with V ∗, g∗ replaced by V (0)

and g(0). Then, the obtained strategy π(1) is

π(1)(t,X)∼N(
X

(1 + γ)σ
− γρν

(1 + γ)σ
(a

(1)
2 (t)X + a

(1)
1 (t)),

λ

(1 + γ)σ2
).

We repeat this procedure and obtain a sequence of strategies {π(n)} represented as

π(n)(t,X)∼N(
X

(1 + γ)σ
− γρν

(1 + γ)σ
(a

(n)
2 (t)X + a

(n)
1 (t)),

λ

(1 + γ)σ2
),

where a(n), i= 1,2 satisfying (19).

Next, we move on to prove the convergence results.

(i) Without loss of generality, we may assume that T = 1. If it is not the case, consider the

function ãt = atT . Let us prove the convergence of a2,(n) first. Then, the convergence of a(1) is an

immediate consequence. Denote by M := ‖a∗2‖ and assume that ‖a(0)
2 − a∗2‖ ≤ ε. Define a sequence

{Kn}n as

K0 = ε,Kn+1 =
A

n+ 1
Kn +

B

n+ 1
K2
n

with A= e2ι γ2

1+γ2
(2 + 2ρνM) and B = e2ι γ2

1+γ2
ρν. We claim that

|a(n)
2 (t)− a∗2(t)| ≤Kn(1− t)n. (EC.15)

We prove (EC.15) by induction. It clearly holds when n= 0. Assume that it holds for n= k. Denote

by δk = a(k)− a∗. Then, we see that δk satisfies the following ODE:

δ̇k+1 = 2ιδk+1 +
γ2

1 + γ2
(2 + ρνa

(k)
2 + ρνa∗)(a(k)− a∗)
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Thus, δk can be explicitly solved as

δk+1(t) =−
∫ 1

t

e2ι(s−t) γ2

1 + γ2
(2 + ρνa

(k)
2 + ρνa∗)(a(k)− a∗)ds

Let C1 = e2ι γ2

1+γ2
. Then, we have

|δk+1(t)| ≤C1

∫ 1

t

(2 + 2ρνM + ρν|δk(s)|)|δk(s)|ds

From the claim that |δk(s)| ≤Kk(1− s)n, we have that

|δk+1(t)| ≤C1

∫ 1

t

(2 + 2ρνM + ρνKk(1− s)k)Kk(1− s)k

=
C1(2 + 2ρνM)Kk

k+ 1
(1− s)k+1 +

C1ρνK
2
k

2k+ 1
(1− s)2k+1

≤
[
C1(2 + 2ρνM)

k+ 1
Kk +

C1ρν

k+ 1
K2
k

]
(1− s)k+1.

Hence, we prove the claim. By the definition of Kn, we see that

Kn+1

Kn

=
A+BKn

n+ 1
.

Thus, we have that

Kn+1 =
ε

(n+ 1)!

n∏
i=0

(A+BKi).

We choose ε < 1 such that ε supn
(A+B)n+1

(n+1)!
< 1. Then, it is easy to get that Kn ≤ 1 and Kn ≤ ε (A+B)n

n!
.

This also implies that

|a(n)
2 (t)− a∗2(t)| ≤ ε(A+B)n

n!
(1− t)n.

Thus, we obtain the convergence of a
(n)
2 .

(ii) Define B(M,T ) as

B(M,T ) :=
{
a∈C[0, T ]

∣∣a(t)∈ [−M,T ] for any t∈ [0, T ]
}
.

By definition, a∗ satisfies

ȧ∗2 = 2ιa∗2 +
γ2

(1 + γ)2
(1 + ρνa∗2(t))2− 1≥ 2ιa∗2− 1.
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Applying comparison principle of ODEs, it holds that

a∗2(t)≤ 1− e−2ι(T−t)

2ι
≤ T,

where we use the inequality e−x + x− 1 ≥ 0, for all x ≥ 0, to obtain the last inequality. On the

other hand, we have C1 ≥ |C2|, which implies that a∗2(t)≥ 0. Thus, we see that a∗ ∈B(M,T ). Now

let us show that a
(n)
2 ∈ B(M,T ) for n= 0,1,2, ..... We prove by induction. By the assumption of

the theorem, it holds for a
(0)
2 obviously. Assume that it also holds for a

(n)
2 . Then,

2ιa
(n+1)
2 (t)− 1≤ 2ιa

(n+1)
2 (t) +

γ2

(1 + γ)2
(1 + ρνa

(n)
2 (t))2− 1≤ 2ιa

(n+1)
2 (t) +C(M,T ).

Using comparison principle agian, we have

−C(M,T )
1− e−2ι(T−t)

2ι
≤ a(n+1)(t)≤ 1− e−2ι(T−t)

2ι
.

According to Assumption 1, this implies that a
(n+1)
2 ∈B(M,T ). Now let ζ be a smooth bounded

function such that ζ(x) = x for x∈ [−M,T ] and ζ(x) = 0 if x≤−M −1 or x≥ T +1. Then, it holds

that

ȧ∗2 = 2ιa∗2 +
γ2

(1 + γ)2
(1 + ρνζ(a∗2(t)))2− 1,

and

ȧ
(n+1)
2 = 2ιa

(n+1)
2 +

γ2

(1 + γ)2
(1 + ρνζ(a

(n)
2 (t)))2− 1.

We see that a(n) is the Picard iteration. Picard-Lindelöf theorem states that a
(n)
2 will uniformly

converge to a∗2. The convergence of a
(n)
1 immediately follows. Hence, we finish the proof. �
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