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Abstract

We propose a unified dynamic framework to study the economics of the supply side of

bitcoin mining, such as endogenous transaction fees, the miners’ liquidation policies, and

endogenous inventory holdings, in the face of declining system block rewards and stochastic

demand. The model yields two economic insights: First, high jump risk and transaction fees

income can be major forces driving miners to significantly reduce their inventory even when

bitcoin prices are relatively low. Second, the model explains the observed co-movements of

average transaction fees, average block sizes, and Bitcoin prices.
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The computer science meaning of Bitcoin1 mining is to prevent double-spending in a proba-

bilistic way in terms of proof-of-work. Indeed, how to prevent double-spending becomes a severe

problem in a distributed network without a central authority. This is a particular case of reaching

consensus in a distributed network, which has shown to be impossible under traditional determin-

istic consensus framework; see, e.g., Lamport et al. (1982) and Fischer et al. (1985). A revolution

pioneered by Nakamoto (2009) was that the double-spending problem might be solved in a proba-

bilistic way by using blockchains and “mining” (a form of proof-of-work). More computer science

background of Bitcoin mining is given in Appendix A.

However, so far, the economic meaning of Bitcoin mining has not been exploited in detail. To

do this, one needs to study the economics of the supply side of Bitcoin mining, such as endogenous

transaction fees, the miners’ liquidation policies, the miners’ endogenous inventory holdings, in the

face of declining system block rewards and stochastic demand.

In particular, we consider two research questions. First, how miners endogenously liquidate

their bitcoins. More precisely, when is the miners’ optimal time to sell, and what is their optimal

selling rate? Because block rewards are the only way that new bitcoins are supplied, any bitcoins

must be first held by miners before entering into circulation. As Athey et al. (2016) observed, the

miners’ share kept declining from 2013 to 2015, regardless of bitcoin price’s drastic fluctuation;

see Fig. 1. In particular, conscious of the scarcity of bitcoin, miners still kept selling their bitcoins

even when the bitcoin price was relatively low. A natural question arises: Why did miners sell so

early and so fast?

The second research question is related to the co-movements of average transaction fee rate,

average block sizes,2 and Bitcoin prices. The miners get two income sources, block rewards

predetermined by the system and the voluntary transaction fees attached by users to the block. The

transaction fees will be the miners’ sole income source after the systematic termination of block

rewards around the year 2140. As shown by Fig. 2, the average transaction fee rate was relatively

1Since Bitcoin is both a currency and a protocol, we use Bitcoin (an upper case letter B) to label the protocol,
software, and community, and bitcoin (a lower case b) to label the currency.

2The block size refers to the size of transaction data written in a block.
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Figure 1: Miner’s inventory proportional to the supply from 2013 to 2015 (Athey et al., 2016).
Propotional inventory = Miners’ aggregate inventory at time t

Cumulative Bitcoin supply at time t .

low and remained fairly flat for an extended period (e.g., 2014-2016), but increased dramatically in

2017, and dropped down quickly afterward. In the meantime, the block size first raised gradually

to the system recommended capacity 1MB till 2017, and then remained stable afterward, while the

bitcoin prices fluctuated dramatically. Obviously, the average transaction fee rate is endogenously

linked to both the bitcoin price and block size. A question that we attempt to investigate is why the

average transaction fee rate and block size endogenously exhibited such an observed pattern in the

face of the bitcoin price movement.

It is challenging to build a comprehensive model to have bitcoin prices, inventory, average

transaction fee rates all endogenously determined. For example, the determination of equilibrium

bitcoin prices alone is a difficult problem due to the highly speculative nature. Instead, in this

paper, we take the bitcoin prices as given and determine the others endogenously.

To answer the two research questions. We build a continuous-time dynamic model inspired

by the classical Hotelling model for exhaustible resources (Hotelling, 1931). Note that both Fig.

1 and Fig. 2 are related to time series and cannot be addressed by a static model. Unlike the

Hotelling model, in which the production rate is the only control variable, the production rate is

predetermined by the Bitcoin system in the form of block rewards and cannot be controlled by

2
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Figure 2: The dynamics of average transaction fee rate and bitcoin price from Jan 2013 to
Sept 2020. The bitcoin price only shows the part below 10000 USD. Average transaction fee rate =

Transaction fees (in bitcoin)
Validated transaction volume (in bitcoin) .

miners. Instead, here the miners’ objective is to maximize the profit by controlling the selling rate

of bitcoins. Furthermore, our model has to incorporate particular constraints and systematic state

variables especially relevant to Bitcoin networks, such as transaction fees voluntarily attached by

users, physical block capacity constraint, declining block rewards, and random demand shocks.

In particular, our model incorporates the interaction between miners and users that is missing

in traditional resource models: Bitcoin miners, to whom the system first distributes bitcoins as

rewards, sell their holdings to users, while in turn, users pay miners a certain amount of bitcoins

(i.e., voluntary transaction fees) upon transactions.

In terms of the first research question, our model with calibrated parameters suggests that it is

optimal for miners to keep reducing their inventory in 2013-2015, as displayed in Fig. 1, regardless

of the drastic fluctuation of bitcoin prices. Our model reveals three possible causes of this pattern.

First, miners sell their bitcoins to make profits and sustain their mining service. Second, high jump

risk is one of the major forces driving miners to sell their bitcoins at an early stage, even when

bitcoin prices are relatively low. We also point out a reasonably high volatility cannot explain why

miners kept selling their inventory in 2014-2015. Third, the transaction fee mechanism is another

driving force for miners to liquidate their bitcoins: The less the miners’ inventory is, the more the

3
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bitcoins held by users, and thus the higher the transaction fees.

In terms of the second research question, our calibrated model can explain the observed pattern

of the co-movements of the average transaction fee rate, block size, and bitcoin price documented

in Fig. 2. The insight gained from the model is as follows. When Bitcoin demand is too low in the

early stage tomake the block capacity full, miners will process all transactions even for thosewithout

attaching any fees, mainly to get block rewards. As a result, the average fee rate tends to be low.

When bitcoin price and Bitcoin demand are high, such that the volume of unconfirmed transactions

reaches or exceeds the recommended block capacity, miners will process those transactions with

higher fees to maximize their profit, which leads the average fee rate to increase drastically. This

explains why the average transaction fee rate remained fairly flat in 2014-2016, during which the

block size was strictly below the capacity limit but increased significantly in 2017 when the block

capacity was almost full, and Bitcoin demand seemed intensive.

Our model has two other economic implications. First, we demonstrate the different roles

of transaction fees and block rewards at different time stages. In the early stage, block rewards

dominate the miners’ value that decreases dramatically with declining block rewards. However,

transaction fees will eventually prevail over block rewards and dominate the miners’ value as time

goes by, even well before the termination of block rewards. Second, the miners’ optimal time to

sale is characterized by a threshold policy, below which one never sells bitcoins. Because the

threshold decreases with the inventory level and all bitcoins are first distributed to miners, miners

with a higher inventory level tend to sell more bitcoins to users so as to receive more transaction

fees in the future.

Our model is flexible enough to incorporate more practical features. For example, it is possible

to extend our model to study an individual miner’s optimal exit choice in the Bitcoin mining

business; see Appendix D.

4
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1 Related Literature

There are several strands of literature relevant to our model. The first is about resource models,

dated back to the celebrated paper by Hotelling (1931) and later extended along with many different

directions; see, e.g., Stewart (1980), Levhari and Pindyck (1981), and Malueg and Solow (1990).

Our work complements this literature by treating Bitcoinmining analogous to the extraction activity

in natural resources. However, as mentioned earlier, our Bitcoin model differs from classic resource

models primarily in twoways: (1) Instead of the production rate, the liquidation rate of the inventory

is the control variable in our model, and the production rate is fixed by the system design. In contrast

classic resource models do not involve inventory. (2) We have to incorporate Bitcoin networks’

particular features, such as transaction fees, block capacity constraint, and block rewards, posing

challenges to the modeling.

The second strand of literature is on transaction fees in Bitcoin payment. Easley, O’Hara, and

Basu (2019) developed a Nash equilibrium model to investigate transaction fees’ role and explain

miners’ and users’ strategic behaviors. Huberman et al. (2017) used a congestion queuing game to

examine how transaction fees and infrastructure levels are determined. They raised concerns about

the sustainability of Bitcoin after the termination of block rewards. Our paper complements Easley,

O’Hara, and Basu (2019) and Huberman et al. (2017) by modeling transaction fees from the miners’

perspective. Both Easley, O’Hara, and Basu (2019) and Huberman et al. (2017) studied transaction

fees with static models from the users’ perspective, ignoring block rewards or assuming constant

block rewards. Our model about transaction fees is dynamic. More importantly, we attempt to

address two research questions related to dynamic observations in Figures 1 and 2. Our model

works even if the block rewards are terminated, as then the transaction fees would become the only

source of income for miners.

The third strand of literature related to our work studies the mining market. Prat and Walter

(2018) used the real option theory to examine the Bitcoin miners’ optimal entry policy. Cong,

He, and Li (2018) studied the role of mining pools in Bitcoin and found that mining pools do

not necessarily undermine the decentralization of Bitcoin’s network. Alsabah and Capponi (2019)

5
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studied the arms race among miners with respect to endogenous R&D investment and showed that

higher investments in research translate into a more aggressive mining game. We complement this

strand of literature by focusing on the supply side of Bitcoin mining, which was not addressed there.

Our paper is also loosely related to the literature on studying bitcoin as a currency. Athey

et al. (2016) analyzed bitcoin’s usage and its value as a currency. Bolt and Oordt (2016) treated

Bitcoin as a medium of exchange and used the equation of quantity to analyze the virtual currency

exchange rate. Recently, Schilling and Uhlig (2019) provided a model of an endowment economy

for Bitcoin as a medium of exchange and found that its fundamental price is a martingale. Benigno,

Schilling, and Uhlig (2019) studied competition between cryptocurrency and national currencies

with a two-country economymodel. In line with this literature, ourmodel uses the quantity equation

of exchange to link the bitcoin price to demand shock.

2 Model Setup

In this section, we develop a continuous-time model to study Bitcoin mining, inspired by the classic

exhaustible resource model in Hotelling (1931). We regard all Bitcoin miners as a whole, i.e.,

the representative miner.3 The miner chooses a dynamic liquidation rate of bitcoin {&C}C≥0 to

maximize the expectation of her discounted accumulative profit

∫ ∞

0
4−VC

(
%C&C − � (&C , �C)

)
3C, (1)

where V > 0 is a given discount rate, %C is the bitcoin price at time C, %C&C represents the revenue

flow, and � (&C , �C) is the cost function depending on the selling rate &C and the miner’s inventory

level �C . Next we will specify the price %C , cost function � (·, ·), the dynamics of the inventory

level �C (that depends on the selling rate, Bitcoin reward rate, and transaction fees), and, more

importantly, the system constraints on the state and control variables. Note that in the classic

3In Appendix C, we shall present the optimal selling strategy for an individual miner instead of one representative
miner. It is shown that an individual miner’s selling strategy is insensitive to her inventory and successful mining
probability. Therefore, we may consider an economy with one representative miner.

6
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Hotelling model the control variable is the production rate, while here the control variable is the

liquidation rate. Furthermore, we have to impose system specific constraints tailored to the Bitcoin

network.

2.1 Bitcoin price and demand

Since we focus on the supply side of Bitcoin mining, we take the demand side and the bitcoin prices

essentially as exogenously given, as the determination of the bitcoin price alone is quite challenging

itself. In other words, the representative miner essentially takes the demand as given to choose

the optimal action in the supply side. However, it should be pointed out that in our model there is

an important feedback from the supply side to the demand side, as (9) specifies the impact of the

optimal inventory holding on the overall transaction volume on the demand side.

Let -C be the demand factor and (C :=
∫ C

0 1D3D be the cumulative supply at time C, where 1D

is the block reward rate. We assume that Bitcoin price is determined by the following quantity

equation of the medium of exchange (Bolt and Oordt, 2016; Fisher (1911); Friedman (1973)):

%C = \?
-C

(
1+W
C

for C ≥ 0, (2)

where parameter W ≥ 0 is the elasticity of bitcoin velocity to supply, and parameter \? > 0 is

determined by the Bitcoin velocity and dollar-value trading volume for one unit of demand. This

equation (2) can be derived from the model in Bolt and Oordt (2016).4 A simple interpretation of

equation (2) comes from the basic economic principle that price is determined by demand - and

supply (.

4According to equation (3.3) in Bolt and Oordt (2016), the bitcoin price in USD %C satisfies %C =
TC

(CVC
, where TC

is the dollar-value trading volume in goods and services with payments settled in bitcoin at time C, VC is the bitcoin
velocity, defined as the average number of times each unit of bitcoin is used to purchase real goods and services at
time C. For simplicity, we assume TC is linearly dependent on the demand level, i.e. TC = \1-C , where \1 represents the
dollar-value trading volume for one unit of demand level. In addition, we assume that the velocity is positively related
to the cumulative supply of bitcoin (C , i.e.,VC = \2(

W
C , W ≥ 0. Letting \? = \1/\2 yields (2).

7
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We assume that -C has the following dynamics

3-C = `(-C)3C + f(-C , 8C)3,C − -C−3
(
#C∑
8=1
(1 − /8)

)
, (3)

where ,C is a standard Brownian motion, #C is a Poisson process with intensity _� , `(·) and

f(·, ·) ≥ 0 stand for the adoption term and volatility term, respectively, 1 − / ∈ (0, 1) refers to the

proportional downward-jump size,5 and 8C ∈ {H,L} represent two market states that correspond

to high-active and low-active markets,6 respectively, with transition intensities Z = (ZH, ZL).

Borrowing the idea frommarketing science, we use the stochastic Gompertz model7 to characterize

Bitcoin’s adoption. Therefore, for a given market state 8 ∈ {H,L}, the functions `(·) and f(·, 8)

take the following forms, respectively:

`(G) = ^(a − ln G)G, f(G, 8) = f8G, (4)

where a is called the log carrying capacity, standing for the stationary mean of the logarithm of

demand factor, ^ is known as the adoption speed, measuring mean-reverting speed, and f8 > 0 is

the volatility at regime 8 ∈ {H,L}.

2.2 The miner’s inventory

The representative miner’s inventory level �C evolves according to

3�C = (1C + �C)3C −&C3C, (5)

5In general, / ∈ (0, 1) could be a random variable. Here we assume constant jump size for simplicity. As pointed
out in Weil (1987), non-government backed money, like bitcoin, is subject to downward-jump risk.

6We will use daily mempool transaction count to identify market states; see Fig. 4.
7See, e.g., Dixon, 1980; Bass, 1969; Mahajan, Muller, and Bass, 1990; Bass, 2004
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where 1C represents the block reward rate, &C ≥ 0 is the miner’s selling rate, and �C represents

transaction fees in a unit period8. Equation (5) indicates that the miner will receive rewards with

the amount of (1C + �C)3C at any period [C, C + 3C], and meanwhile, the miner sells bitcoins at a

controllable rate &C ≥ 0. We will specify how the transaction fee �C is determined endogenously in

Section 2.4.

Since block rewards are predetermined and halve every four years, the reward rate 1C is a

deterministic and decreasing function of time C. Moreover, 1C ≡ 0 for all C ≥ ) , where ) is a

predetermined time around the year 2140. Henceforce, the cases before and after the termination

of block rewards are called the short-run case and the long-run case, respectively.

2.3 The miner’s cost

The miner’s cost consists of two parts, mining cost and liquidation cost. The mining cost is mainly

from the expense of electricity, which is assumed to be a constant �<, consistent with Easley,

O’Hara, and Basu (2019) and Cong, He, and Li (2018). The liquidation cost includes losses due to

price drop and losses of marginal utility upon sale. Parsimoniously, as in the investment literature

for adjustment cost or execution cost (see, e.g., Hayashi, 1982; Graewe and Horst, 2017), the

liquidation cost is assumed to be convex in the selling rate and decrease in the miner’s inventory

level. For analytical tractability, we adopt the following form for the total cost: �< + � (&C , �C),

where the liquidation cost

� (&C , �C) = k%C&2
C /�C (6)

with a constant parameter k. Since we do not impose budget constraint for simplicity, the constant

mining cost �< does not affect the miner’s control decision. Therefore, we might as well take

�< = 0.

Note that the liquidation cost � (&, �) is related to the inventory level because Bitcoin can be

8We assume that the miner is not allowed to purchase bitcoins. The transaction fees in Equation (5) come from
verifying and confirming users’ transactions, excluding those from the miner’s own transactions because (i) only
transaction fees from users could increase the miner’s inventory, and (ii) the transaction fees from the miner’s own
transactions are usually tiny compared with transaction fees from users and the miner’s selling amount.

9
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viewed as a digital art product with scarcity: the lower the inventory, the higher the liquidation

cost could be, as the miner would be less willing to sell her holding. Particularly, when the

miner’s inventory goes to zero, i.e., � = 0, the marginal utility loss tends to infinity. It is also

worthwhile pointing out that the cost function is homogeneous9 of degree one in & and �, i.e.,

� (X&, X�) = X� (&, �) for X > 0.

2.4 Endogenous transaction fees

The representative miner’s income has two parts, the block rewards determined exogenously by

the Bitcoin system, and transaction fees attached to the transactions waiting to be confirmed by

the miner. We shall find transaction fees endogenously by solving an optimization problem faced

by the miner: Due to capacity constraints, the miner prefers to mine the transactions with higher

attached fees to maximize the income.10

There is a capacity constraint when mining transactions, i.e. only a fixed number of orders in a

unit period can be processed.11 As such, we denote the system’s capacity for the block size to be�.

We assume that for any volume of unconfirmed transaction orders,12 their attached fee rates

share the same distribution with the density function 5 (·) over the interval [0, q̄], where q̄ is

the upper bound of the fee rate determined exogenously by the competition with other payment

methods.

We postulate that the volume (in bitcoin) of unconfirmed transaction orders, denoted by !, takes

9Thanks to the homogeneirty, we can simplify model calibration when extending the model to the case of identical
individual miners, also thanks to the fact the individual miners’ liquidation strategies are insensitive to their inventory
(see Appendix C).

10At the beginning of each round of mining, a miner will construct a candidate block by selecting the unconfirmed
transactions stored in her node. Miners sort the unconfirmed transactions with respect to the magnitude of the attached
fees in mempools and send them into a candidate block as much as possible until the candidate block’s capacity is
reached.

11In the Bitcoin system, each block has limited capacity (i.e., 1MB), which can accommodate about 4000 transaction
orders. Since every ten minutes, only one block can be successfully validated and attached to the blockchain, there is
a fixed number of orders that can be processed within a unit period.

12Here, the transaction orders refer to those submitted by users, as only users’ transactions can contribute to the
miner’s income to increase her inventory.

10
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the following particular form:

! (-C , �C , 8C ; (C) = \8C [1 − �C/(C](
(1−U)WB
C -UC , 8C ∈ {H,L}, (7)

where (C is the cumulative supply of Bitcoin, -C is the demand shock, \8C > 0 is a parameter

depending on market state 8C , and constants U ∈ [0, 1] and WB > 0 measure the dependence degree

on (C and -C .

The function form in Equation (7) captures three important features of the unconfirmed transac-

tion volume: (i) It associates with Bitcoin adoption, which is positively related to (C . (ii) It depends

on demand shock -C . (iii) A miner does not charge fees for her own transactions. The term13

1 − �C/(C reflects the fact that the higher the miner’s bitcoin holding, the lower the unconfirmed

transactions.

Note that under (7), theminer’s inventory holding� can affect !, which captures a vital feedback

from the miner to users in our model of Bitcoin mining. More precisely, the representative miner’s

liquidating strategy could affect the future income from transaction fees from users.

To maximize the income, during a unit period, the miner chooses unconfirmed transactions

with higher fees as much as possible, subject to the capacity constraint. This leads to the following

optimization problem for transaction fees �:

� = max
q∈[0,q̄]

 (q)! subject to : (q)! ≤ �, (8)

where : (q)! stands for the volume of selected transactions, � is the system capacity of block size,

and

: (q) =
∫ q̄

q

5 (B)3B and  (q) =
∫ q̄

q

5 (B)B3B (9)

represent respectively the proportion and fees of selected transactions in one unit volume of

unconfirmed transactions.
13Note that �C ≤ (C for any C.

11
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(0, 0)

f(φ)

φ
φ∗ φ̄

k(φ∗)L = G

Figure 3: Distribution of Bitcoin transaction fees and the threshold fee rate .

The resulting optimal choice of the threshold fee rate, as a function of !, is given by

q∗(!) =


�−1(1 − �

!
), if ! > �,

0 if ! ≤ �,
(10)

where � (·) is the cumulative distribution function of 5 (·), �−1(·) stands for the inverse function of

� (·); see Fig. 3 for illustration. Therefore, the transaction fees paid to the miner are

� =  (q∗(!))!. (11)

The average transaction fee rate thatmeasures the ratio of transaction fees to the validated transaction

volume in bitcoin is given as follows:

A =
�

: (q∗)! =
 (q∗)
: (q∗) . (12)

It is worthwhile pointing out that the above formulation is consistent with the first-price auction

problem studied in Basu, Easley, O’Hara, and Sirer (2018), and the miner’s optimal fee collection

policy is associated with a symmetric Bayes-Nash equilibrium in that paper.

12
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In our numerical study, we will choose a Beta distribution for �, with a density

5 (H) = q̄
1−01−02H01−1(q̄ − H)02−1

�(01, 02)
, (13)

where �(01, 02) =
∫ 1

0 D01−1(1 − D)02−13D is the Beta function, and 01 and 02 are constants to be

calibrated with market data.

2.5 Miner’s optimization problem

In summary, the mining problem is to choose an admissible control strategy {&C}C≥0 ∈ AC to

maximize the expected present profit (1), namely

+8 (C, G, ℎ) = sup
{&D}D≥C∈AC

EC

[ ∫ ∞

C

4−V(D−C)
(
%D&D − � (&D, �D)

)
3D

]
, (14)

subject to state dynamics and constraints (2)–(6), and endogenous transaction fees in (11) with the

volume of transaction orders in (7) and the function q∗ in (10). Here EC denotes the expectation

conditional on the information up to time C, and AC represents the set of admissible strategies

starting from (C, 8C , -C , �C) = (C, 8, G, ℎ) ∈ (0,∞) × {H,L} × (0,∞) × [0, (C]; a strategy {&C}C≥0 is

admissible if, for any C > 0, &C ≥ 0 is adapted to information filtration up to time C.

3 Theoretical Analysis

3.1 HJB equation and optimal strategy

By the dynamic programming principle, the value function +8 (C, G, ℎ) satisfies the following

Hamilton-Jacobi-Bellman (HJB) equation,14

m+8

mC
+ L+8 +max

@≥0

{[(
1C +  (q∗(!))!

)
− @

] m+8
mℎ
+ %@ − � (@, ℎ)

}
+ J+8 = V+8 (15)

14A verification theorem that the solution of HJB equation (15) equals the value function (14) can be rigorously
proved following standard procedures in stochastic control literature, i.e., Cuoco and Liu (2000).
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for (G, ℎ) ∈ (0,∞) × [0, (C] and 8 ∈ {H,L}, where % = \?G/(1+W
C , ! = ! (G, ℎ, 8; (C) is as given by

(7),  (·) and q∗(·) are as given in (9) and (10), respectively, and differential operators L and J

are defined respectively by

L+8 =
1
2
f2(G, 8) m

2+8

mG2 + `(G, 8)
m+8

mG
, (16)

J+8 = _�

[
+8 (C, /G, ℎ) −+8 (C, G, ℎ)

]
+ Z8

[
+](C, G, ℎ) −+8 (C, G, ℎ)

]
(17)

with ] ∈ {H,L} and ] ≠ 8.

Note that after the termination of block rewards (i.e., in the long-run case C ≥ )), we have 1C ≡ 0

and (C ≡ (̄ ≡
∫ )

0 1D3D, where (̄ represents bitcoin’s total available supply and will be scaled to

one in our computation.15 As such, the corresponding value function is independent of time C, i.e.,

+8 (C, G, ℎ) = +8 (), G, ℎ) =: +)
8
(G, ℎ) for C ≥ ) , and the corresponding HJB equation (15) reduces to

L+)8 +max
@≥0

{(
 (q∗(!))! − @

) m+)
8

mℎ
+ %@ − � (@, ℎ)

}
+ J+)8 = V+)8 (18)

for (G, ℎ) ∈ (0,∞) × [0, (C] and 8 ∈ {H,L}, where ! = ! (-, �, 8; (̄).

Optimal strategy

Denote by @∗
8
the optimal selling rate at state 8. If @∗

8
> 0, then by the HJB equation and the first

order condition, we have

% =
m+8

mℎ
+ m�
m@

=
m+8

mℎ
+ 2k%

ℎ
@∗8 ,

which indicates that the optimal (positive) selling rate is chosen such that the marginal value of

holding plus marginal liquidation cost must be equal to the bitcoin price. We then obtain the

optimal selling rate @∗
8
as follows:

@∗8 =
ℎ

2k%

(
% − m+8

mℎ

)+
, (19)

15The true value of (̄ is around 21 million.
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which implies that selling is optimal if and only if the bitcoin price is strictly greater than the

marginal value of holding. Therefore, for a given state 8 ∈ {H,L}, we can define the 8-Selling

region and 8-Holding region, respectively, as follows:

8-Selling Region = {(C, G, ℎ) | @∗8 > 0} =
{
(C, G, ℎ)

��� % > m+8 (C, G, ℎ)
mℎ

}
,

8-Holding Region = {(C, G, ℎ) | @∗8 = 0} =
{
(C, G, ℎ)

��� % ≤ m+8 (C, G, ℎ)
mℎ

}
.

Numerical algorithm

TheHJB equations (15) and (18) do not allow analytical solutions. So, we have to resort to numerical

solutions. We employ the finite difference method to numerically solve the HJB equations. We

first solve the stationary problem (18), then solve the time-dependent problem (15) backward with

the stationary solution as the terminal condition. The detailed algorithm is as given below:

1. Use the finite difference method to solve (18) for +)
8
(G, ℎ), 8 ∈ {H,L}.

2. Set the terminal condition +8 (), G, ℎ) = +)8 (G, ℎ), 8 ∈ {H,L}.

3. Use the finite difference method to solve (15) for +8 (C, G, ℎ), 8 ∈ {H,L} for C < ) , with the

above terminal condition.

Once the value functions +8 are obtained, we can use Equation (19) to find the optimal selling

strategy.

3.2 Average transaction fee rate

Proposition 1. Consider the miner’s average transaction fee rate A , as defined in (12).

(i) If ! ≤ �, then q∗ = 0 and A =  (0)/: (0).

(ii) If ! > �, then q∗ and A are strictly increasing with - (or !). In particular, we have

lim
-→∞

q∗ = lim
-→∞

A = q̄.
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Part (i) of Proposition 1 indicates that when the unconfirmed transactions are not enough to

fill the miner’s capacity, i.e., ! ≤ �, the miner will set q∗ = 0 to take all of the unconfirmed

transactions, including those without transaction fees, and the corresponding average transaction

fee rate becomes constant according to (12). Since a lower demand leads to a lower volume of

unconfirmed transactions, part (i) suggests that the average transaction fee rate can be flat when the

Bitcoin demand is sufficiently low. This is consistent with the market observation that in the period

of low transaction demand (e.g., the period of 2013-2016, as shown in Fig. 2), the transactions

without attaching any fees could be processed, and the individual average fee rate remained constant.

Part (ii) of Proposition 1 suggests that when the number of unconfirmed transactions exceeds

the capacity, both the threshold fee rate and individual average fee rate could increase dramatically.

This also coincides with the fact that in the period of high transaction demand (e.g., the year 2017,

as shown in Fig. 2), users need to pay quite a high fee to ensure their transactions to be processed.

4 Model Calibration

4.1 Data and parameter choices

Denote by A�C and ��
C the average transaction fee rate and aggregate inventory for all miners at

time C, respectively. We will use the following available data in the Bitcoin system to calibrate our

model:

• Monthly bitcoin price {%C ; C = 1, · · · , )1} from Jan 2013 to Sep 2020 (see Fig. 2);

• Monthly average transaction fee rate {A�C ; C = 1, · · · , )1} from Jan 2013 to Sep 2020 (see Fig.

2);

• Monthly average block size in megabytes {Λ�C ; C = 1, · · · , )1} from Jan 2013 to Sep 2020.

• Monthly aggregate inventory {��
C ; C = 1, · · · , )2} from Jan 2013 to Dec 2015 (see Fig. 1); 16

16According to Athey et al. (2016), as more and more miners use mixing strategy to conceal their transactions since
2014, it is difficult to reveal miners’ bitcoin holdings by tracking their addresses.
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• Daily mempool transaction count in Bitcoin from Apr 2016 to Sep 2020 (see Fig. 4).

Here C = 1, )1 = 72, and )2 = 36 correspond to Jan 2013, Sep 2020, and Dec 2015, respectively.

It is worthwhile pointing out that the monthly aggregate inventory data, which is not directly

observable, is obtained by Athey et al. (2016) and available only from Jan 2013 to Dec 2015.

The bitcoin price %C is informative to the set of parameters Θ1 = {^, a, fH, fL} in (3), while

the average fee rate A�C , average block size Λ�C , and aggregate inventory ��
C are informative to the

set of parameters Θ2 = {_, \H, \L, U, WB}. Calibrating the parameters in Θ2 will be elaborated on

in Section 4.2.

Our model assumes two regimes in bitcoin transaction: high-active regime and low-active

regime. In the high-active regime, the transaction is very active, implying a large number of orders

submitted by users and high volatility in bitcoin price. In the low-active regime, the transaction

of bitcoin is relatively less active, implying a small number of users’ orders and low volatility in

bitcoin price. Using the time series of the mempool transaction count,17 as shown in Fig. 4, we can

quickly identify two regimes. Indeed, one can observe that from the end of 2016 to the beginning

of 2018, the moving average of the mempool transaction count is much higher than that in the rest

periods. Then, we roughly divide the period of 2013 to 2020 into three parts:

• low-active regime from 2013 to 2016 Q3,

• high-active regime from 2016 Q4 to 2017 Q4, and

• low-active regime from 2018 Q1 to 2020 Q3.

Next, we set values for some parameters. We take the discount factor V = 6% that is commonly

used in many empirical studies. We normalize the number of bitcoin to be one, i.e., (̄ = 1. The

corresponding block rewards function becomes 1C = 1
2[C/4]+3 as the block rewards halve every four

years. For computational simplicity, we assume that the Bitcoin block rewards will terminate in

17Mempool is the set of all unconfirmed transactions from users in the Bitcoin network The mempool transaction
count refers to the total number of unconfirmed transactions in the mempool, The mempool transaction count data,
available at www.blockchain.com, is a good proxy for the number of unconfirmed transactions and is employed to
detect the high-active and low-active regimes. A high (low) mempool transaction count suggests a large (small) number
of unconfirmed transactions.
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Figure 4: The high-active and low-active markets suggested by daily mempool transaction
count (in thousand) from 2016 to 2020. The red line represents the 60-day moving average.

2050, after which block rewards will be tiny and can then be neglected. The capacity of blocks

per unit of time is chosen as � = 10. In fact, the average volume per transaction order since

2016 is around 1.05 bitcoin. Note that each block can accommodate about 4000 transaction

orders. This suggests that the capacity of number of orders that the Bitcoin system can process

in a year is 4000 × 6 × 24 × 365 = 210, 240, 000. Then the normalized capacity per year is

� = 1.05 × 210, 240, 000/21, 000, 000 ≈ 10, where 21, 000, 000 is the total actual number of

bitcoin. We set \? = 100, which implies that one unit change of the demand could lead to a change

of 100 billion USD in the bitcoin price. In fact, \? plays a role in scaling the demand factor - , so

the value of \? does not affect our findings. We will choose W = 0, as Athey et al. (2016) show that

the bitcoin velocity is approximately constant. For the parameters in the Beta distribution in (3.4),

we set (01, 02) = (0.1, 99.9) and q̄ = 10%, which can capture the effect that the average fee rate

could increase dozens of times as the bitcoin price changes (see Fig. 2).

We set the transition intensities ZH = 0.8 and ZL = 0.3, which implies an average duration of

1.25 years for the high-active regime and of 3.33 years for the low-active regime. The durations are

consistentwithwhatwe observe from the dynamics of themempool transaction count. Furthermore,

we adopt the jump parameters _� = 57 and / = 0.9 estimated by Gronwald (2015), which implies
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a rough 10% downward jump once a week.

We now use the bitcoin price to estimate the parameters Θ1 = {^, a, fH, fL} for the Gompertz

diffusion model of demand shock (i.e., Gutierrez et al., 2004). Based on the characterization of

high-active and low-active regimes from 2016 to 2020, we estimate the annualized volatility for

both high-active and low-active regimes and obtain fH = 0.7910 and fL = 0.6225, which suggests

that the demand shock in the high-active regime is more volatile than in the low-active regime.

Using the historical bitcoin prices and (2), we obtain the estimated values of Bitcoin’s adoption

speed and the log carrying capacity, i.e., ^ = 1.2397 and a = 0.6527.

4.2 Calibration method for Θ2 = {k, \H, \L, U, WB}

It remains to estimate the parameters Θ2 = {k, \H, \L, U, WB} by matching model outputs with the

observed data. We will calibrate Θ2 using the market data {(A�C , ��
C ), C = 1, 2, · · · } as well as the

observed bitcoin prices.

With the observed bitcoin prices, we can recover the demand shock path over time {-̃C ; C =

1, · · · , )1} through Equation (2). Let {]C ; C = 1, · · · , )1} be the observed market states as given by

Fig. 4. Given the observed inventory level �̃C and demand level -̃C at time C, we have

!̃C = ! (�̃C , -̃C , ]C ; (C), (20)

q̃C = q∗( !̃C), (21)

@̃C = @∗]C (C, -̃C , �̃C ;Θ2), (22)

where ! (·, ·, ·; (C) and q∗(·) are as given in (7) and (10), respectively, and @∗8 (·, ·, ·;Θ2), 8 ∈ {H,L}

is the optimal selling rate given in (19) with a given set of parameters Θ2 and can be obtained

by numerically solving the HJB equation. We then obtain the following average fee rate {ÃC , C =

1, · · · , )1}, average block size {Λ̃C , C = 1, · · · , )1}, and inventory {�̃C , C = 2, · · · , )1} implied by
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the model:

ÃC (Θ2) =
 (q̃C)
: (q̃C)

, (23)

Λ̃C (Θ2) = !̃C/�1{!̃C<�} + 1{!̃C≥�} (24)

�̃C+1(Θ2) = �̃C + [1C + �̃C (Θ2)]XC − @̃CXC, (25)

where XC = 1/12 year as we use monthly data. The dependence of �̃ on Θ2 is apparent. We point

out that Ã also depend on Θ2 as they implicitly depend on �̃ through !̃.

Then we can estimate parameter set Θ2 by minimizing the weighted least square relative error

between model output and observed data:

min
Θ2

1
)1

)1∑
C=1

{
1
(A�C )2

(A�C − ÃC (Θ2))2 +
1
(Λ�C )2

(Λ�C − Λ̃C (Θ2))2
}
+ 1
)2

)2∑
C=2

{
1
(��

C )2
(��

C − �̃C (Θ2))2
}
.

We use the simulated annealing algorithm (Eglese, 1990), which is good at minimizing a function

with many local minima, to find the minimum of our objective function.

4.3 Calibration results

The estimated values of Θ2, together with other parameter values, are summarized in Table 1.

As one can see, k = 0.39, indicating that there is a high cost from liquidation for miners. Such

liquidation cost could be higher for a smaller amount of holding, implying that people may view

Bitcoin as a kind of digital art with inevitable scarcity and miners may prefer to holding at least

a small amount of bitcoins rather than selling all of them. On the other hand, the sensitivity of

volume to demand in the high-active regime is \H = 346.5, which is much higher than \L = 62.3

in the low-active regime. This is consistent with the data that the mempool transaction count in the

high-active regime is six times of that in the low-active regime.

In Fig. 5, we plot the model-implied miners’ inventory in proportion to the supplied bitcoin

(i.e., proportional inventory). One can see that the model-implied proportional inventory (the solid

20

Electronic copy available at: https://ssrn.com/abstract=3780858



Table 1: Summary of parameters.

Parameters Symbol Value
Discount rate V 6%
Total supply of bitcoin (̄ 1
Capacity of blocks per unit of time G 10
Hash rate per miner (TH/s) l 5.2
Coefficient in quantity equation (Billion USD per unit) \? 100
Elasticity of bitcoin velocity to supply W 0
Upper bound of fee rate q̄ 10%
Beta distribution parameters (01, 02) (0.1, 99.9)

Adoption speed of Bitcoin ^ 1.2379
Log carrying capacity a 0.6527
Volatility of demand shock in high-active regime fH 0.7910
Volatility of demand shock in low-active regime fL 0.6225
State transition intensity (ZH, ZL) (0.8, 0.3)
Jump parameters (_� , /) (57, 0.9)

Parameter in liquidation cost k 0.39
Sensitivity of volume to demand in high-active regime \H 346.5
Sensitivity of volume to demand in low-active regime \L 62.3
Shape parameters in ! (U, WB) (0.6, 8)

line) matches the observed one (the dashed line) well from 2013 to 2015. As shown by the dotted

line in the figure, the bitcoin price experienced a drastic increase and a gradual decline during

this period. This suggests that our model can capture the pattern that miners kept reducing their

bitcoin holdings regardless of bitcoin price’s drastic fluctuation. The pattern may be attributed to

three reasons. First, miners reduce their inventory to make profits and sustain their mining service.

Second, as will be shown in Section 5, we find that high jump risk is one of the major forces driving

miners to sell their bitcoin holdings at an early stage even when bitcoin prices are relatively low

or very volatile (see Fig. 8). Third, we find that transaction fees are another driving force for

miners to reduce their inventory. The intuition is quite simple. As users attach transaction fees, the

users’ bitcoin holding significantly affects the magnitude of transaction fees: the less the miners’

inventory, the larger the users’ bitcoin holding, and thus the higher the transaction fees (see also

Fig. 10). Moreover, as transaction fees will be the miners’ unique income source in the long-run,

miners have a strong incentive to reduce their inventory in order to make their mining business
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Figure 5: Implied miner’s proportional inventory from 2013 to 2015. The dashed black line
shows the observedminers’ proportional inventory based on the estimation fromAthey et al. (2016).

In panel A of Fig. 6, we plot the model-implied average fee rate (solid line), which captures

the features of the observed data (dashed line): 1) From 2014 to middle 2016, the average fee rate

was almost flat; 2) From late 2016 to 2018, the average fee rate rose dramatically. As shown in the

panel B of Fig. 6, the model-implied block size (solid line) well matches the observed data (dashed

line): 1) In the period 2013-2016, the block size was increasing but lower than 1MB, the block

capacity. 2) Since 2017, the blocks were almost full.18

Combined with Fig. 6 and Proposition 1, our model can explain the co-movement of the block

size and the average fee rate. When Bitcoin demand is low (e.g., 2014-2016), blocks are not full and

the miners process all unconfirmed transactions. Then the average fee rate tends to be flat. When

the demand is so high (e.g., after 2017) that the volume of unconfirmed transactions significantly

exceeds the block capacity, miners should prioritize the validation of unconfirmed transactions with

higher fees. Thus, blocks could be almost full and the average fee rate may increase dramatically.19

18Before 2019, the largest capacity for a block was 1MB. Since 2019, the block capacity increased slightly as a new
process SegWit was introduced in Bitcoin system; see https://en.wikipedia.org/wiki/SegWit.

19There are some slight mismatches between model-implied results and observed data. They may be partially due
to the irrational behaviors in Bitcoin mining in an early period (e.g., 2013) and imperfect identification of regimes in
Bitcoin transactions.
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Figure 6: Implied average fee rate and implied average block size from 2013 to 2020. The
dashed line in panel A represents the monthly observed average fee rate.The dashed line in panel B
represents the monthly observed average block size.

5 Quantitative Analysis

We shall conduct an quantitative analysis in this section with the parameter values of Table 1 as

default values.

5.1 The miner’s optimal strategy
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Figure 7: Selling and holding regions in the high-active regime with no jump risk (_� = 0).
Parameter values are based on Table 1. The left panel shows the short-run case, i.e., with block
rewards, C = 2014 and (C = 0.5871. The right panel shows the long-run case in which the block
rewards are terminated, i.e., C = 2140.
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Optimal selling barrier, selling region, and holding region. Fig. 7 shows the miner’s

liquidating strategies for the short-run case (C = 2014, the left panel) and the long-run case (the

right panel), where the high-active regime with no jump risk (_� = 0) is assumed, the cumulative

supply of bitcoin is (C = 0.5871 for the short-run case, and other default parameters are reported

in Table 1. Numerical results for the low-active regime are quite similar and are thus omitted here.

It shows that there exists an optimal selling barrier, splitting the solution region into a holding

region and a selling region in which the miner holds and sells her inventory, respectively. For a

fixed inventory level, the selling region is below the (optimal) selling barrier because the miner is

inclined to reduce her inventory when the demand shock is lower enough.

It can be observed from Fig. 7 that the selling barrier decreases as the inventory level increases

partially because a higher inventory prompts miners to reduce their inventory earlier in order to

receive higher transaction fees in the future. Note that the selling barrier slightly decreases with

inventory in the short-run case (the left panel of Fig. 7), as block rewards significantly prevail over

the transaction fee income in this case. As shown by the right panel of Fig. 7 for the long-run case,

the selling barrier exhibits a clear downtrend against inventory. This is because in the long run,

transaction fees are the unique source of miners’ income, and miners are inclined to reduce their

inventory to increase potential transaction fee income.

Jump risk or high volatility? The jump intensity _� and the volatility fH (fL) impact the

miner’s optimal selling strategy quite differently. In particular, we shall point out a reasonably high

volatility cannot explain why miners kept selling their inventory in 2014-2015..

Fig. 8 plots the selling barrier against jump intensity _� for the short-run case (C = 2014),

where the high-active regime is assumed, (C = 0.5871, �C/(C = 0.1, and other default parameter

values are given in Table 1. As jump intensity increases from 0 to 57, the selling barrier decreases

from around 1.6 to 0. This implies that jump risk could hasten miners’ selling of bitcoin holdings.

In particular, for a high jump risk, e.g., _� = 57, miners keep selling their bitcoin holdings. We

then infer that the jump risk is a primary factor determining miners’ optimal selling timing. This

also explains why miners started to sell their holdings to market at the inception of Bitcoin even
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Figure 8: Impact of jump intensity _� and volatility fH (fL) on the selling barrier for the
short-run case in the high-active regime. Parameter values are based on Table 1. For panel B,
we assume fH = fL = f varying from 100% to 300%. We choose C = 2014 and �C/(C = 0.1 with
(C = 0.5871.

when bitcoin prices and demands were extremely low. Note that the demand level implied from

bitcoin price could be as low as 0.073 in 2014-2015 and increased to 4.03 in 2017. In contrast, a

reasonably high volatility in Bitcoin demand shock could not drive miners to sell when the bitcoin

demand was so low in 2014-2015. For example, as shown in the right panel of Fig. 8, even for the

volatility of 300%,20 the selling barrier is higher than 0.2, which is much higher than the demand

level 0.073 in 2014-2015. Therefore, a reasonably high volatility cannot explain why miners kept

selling their inventory in 2014-2015.

Optimal selling rate. Fig. 9 depicts the miner’s optimal selling rate against demand shock and

inventory level for the short-run case (C = 2014) in a high-active regime with no jump risk (_� = 0).

The optimal selling rate appears to be smooth and non-decreasing with respect to both inventory

and demand levels.
20Note that Liu and Tsyvinski (2018) estimate the bitcoin price volatility with daily, weekly, and monthly data and

find the annualized volatility varies from 106.03% to 240.61%.
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Figure 9: Optimal selling rate against demand shock and inventory for the short-run case in
the high-active regime with no jump risk _� = 0. Here C = 2014 with (C = 0.5871, and other
default parameter values are as given in Table 1.

5.2 Average transaction fee rate

Now let us investigate the properties of the average transaction fee rate. Fig. 10 plots the miner’s

average transaction fee rate against the demand shock in the high-active regime (panel A) and the

low-active regime (panel B), respectively. It can be seen that consistent with Proposition 1, the

average transaction fee rate in both the long-run case (solid lines) and the short-run case (dashed

lines) is non-decreasing in demand shock, as a higher demand shock results in a larger volume

of unconfirmed transactions. Moreover, as predicted by part (i) of Proposition 1, the average

transaction fee rate is likely flat when the demand shock is sufficiently low. One can also observe

that the average fee rate in the long-run is always no lower than in the short-run, which is not

surprising because, ceteris paribus, there are more circulated bitcoins and thus more transactions

in the long-run than in the short-run. In addition, the average fee rate in the low-active regime is

lower than or equal to that in the high-active regime, as more transactions occur in the high-active

regime.
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Figure 10: The average fee rate against demand shock for different inventory. The short-run
case is at C = 2014. The left panel is for the high-active regime, while the right panel is for the
low-active regime.

We further examine how the miner’s holding affects transaction fees. As shown in Fig. 10,

the average fee rate with � = 0.2 (black lines) is always lower than that with � = 0 (gray lines).

Intuitively, ceteris paribus, the more bitcoins held by miners, the fewer bitcoins held by users, and

the fewer users’ unconfirmed transactions as a result. Combined with Proposition 1, this explains

why a higher miner’s inventory could induce a lower average fee rate.

5.3 The miner’s value function

We now examine how transaction fees and the declining block rewards affect the miner’s value in

Bitcoin mining in both short run (with block rewards) and in long run (without block rewards). For

computational simplicity, the block rewards are assumed to terminate in 2050, as there are very few

block rewards from 2050 and ultimately no block rewards from 2140. Fig.11 presents the miner’s

value against time without (solid line) and with jump risk (dashed line), respectively. The dashed

line is always below the solid line because jump risk hurts the miner’s value.

Note that in both cases, the miner’s value against time is U-shaped, which can be attributed to

the declining block rewards and endogenous Bitcoin transaction fees. Indeed, at the early stage of

the Bitcoin systemwhen the transaction volume is low while block rewards are high, the majority of
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a miner’s income comes from block rewards. As such, the declining block rewards predetermined

by the system lead the miner’s value to be decreasing with time at the early stage, ceteris paribus.

As time goes up, endogenous transaction fees would eventually dominate the miner’s value, even

before the termination of block rewards, which explains the increasing part of the miner’s value.
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Figure 11: The miner’s value function across time in the high active regime. Here the initial
demand - = 1 and initial inventory 0. Note that in the beginning the block rewards are high but
the endogeneuous transaction fees are low, while in the long run the block rewards diminish but the
endogenous transaction fees become high.

6 Conclusion

We develop a continuous-time dynamic model to study the economics of the supply side of bitcoin

mining, inspired by the classic Hotelling model for exhaustible resources. The model is rich enough

to incorporate endogenous transaction fees, the miners’ liquidation policies, endogenous inventory

holdings, declining system block rewards, and stochastic demand. We find that high jump risk

and transaction fees are major forces driving miners to reduce their inventory even when bitcoin

prices are extremely low, consistent with empirical observations. The model gives an explanation

for the observed co-movements of average transaction fee rate, average block sizes, and Bitcoin

prices, especially why the average transaction fee rate stays flat from 2014 to 2016 and increases

dramatically in 2017.
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Online Supplement

From Hotelling to Nakamoto:
How Do Miners Liquidate Their Bitcoins?

Appendices

A Background of Bitcoin Mining

Bitcoin system in Nakamoto (2009) is a decentralized online payment system with an embedded

crypto-currency, bitcoin. Capped at 21 million in total number, bitcoins are supplied in terms of

block rewards that will terminate in 2140. There are two groups of fundamental participants in

the Bitcoin system: users and miners. Compensated by block rewards and/or transaction fees as

an incentive, miners play an indispensable role in the system by validating users’ transactions and

updating the distributed ledger (i.e., the blockchain) through a particular type of proof-of-work.

Once a miner’s candidate block is successfully attached to the blockchain, the miner will get two

sources of income, block rewards predetermined by the system and the transaction fees attached to

the block. The two sources have distinct features: Block rewards are deterministic and exogenous,

as the amount of block rewards is halved after every four years and will vanish after the year 2140;

see the left panel of Fig. 12. Hence, bitcoin’s total supply is fixed and finite, and scarcity is one of

bitcoin’s most distinctive features. In contrast, transaction fees are stochastic and endogenous, as

miners can select which transactions are included in the mining block according to the transaction

fees attached by users. Consequently, the higher the transaction fees attached to a transaction, the

more likely the transaction will be added to a block for mining.

Note that the only way to generate new bitcoins is through the mining record, and the total

number of available bitcoins is 21 million, resulting in the termination of supplying new bitcoin

in the year 2140. The unique pattern of block rewards suggests that the Bitcoin system’s lifetime
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Figure 12: Two types of miner’s revenue: block rewards and transaction fees. The left figure
shows the predetermined block rewards for each successfully mined block, which gets halved every
four years and will terminate in the year 2140. The right figure shows the daily transaction fees in
terms of bitcoin from 2009 to 2020.

can be divided into two stages: the short-run period (i.e. before the termination of bitcoin supply

in 2140) and the long-run period (i.e., after the termination of bitcoin supply in 2140). In the

long-run, miners’ activities are only compensated by transaction fees.

B Proof of Proposition 1

Proof. By definition, it is easy to check that  ′ < 0 and :′ < 0. The optimal strategy of problem

(8) is given by (10). Assertion (i) thus follows by (10) immediately. For assertion (ii), the first part

follows from a direct calculation

mA

m-
=

m

m-

( (q∗)
: (q∗)

)
=

( (q∗)
: (q∗)

)′mq∗
m-

=
5 (q∗)

∫ q̄

q∗
(D − q∗) 5 (D)3D
:2(q∗)

mq∗

m-
> 0.

and the fact that ! is an increasing function of - . The second part follows by a direct application

of L’Hôpital’s rule. �

C An Individual Miner

A–2

Electronic copy available at: https://ssrn.com/abstract=3780858



For simplicity, we assume no regime-switching in the demand shock of Bitcoin. We consider an

economy with identical miners that are endowed with certain computation powers and face the

same mining cost per unit of computational power. Let l TH/s be the computing power of a miner

in terms of hash rate, and denote by c the probability that the miner can successfully mine a block

and win rewards/fees in 10 minutes. The winning probability c is approximate to be, according to

Hayes (2017),

c =
l

� × 223/600
, (26)

where � is the difficulty level, and � × 232/600 is called the network hash rate of Bitcoin system.

Let c ∈ (0, 1] be the probability that the miner can successfully mine a block and win re-

wards/fees in 10 minutes. Then the individual’s miner’s inventory level �C evolves according

to

3�C = (1C + �C)c3C −&C3C. (27)

For an individual miner with inventory level �C at time C, the system naturally imposes a

constraint

0 ≤ �C ≤ (C . (28)

In fact, only transaction orders submitted by users and other miners could contribute to the miner’s

transaction fees and thus be regarded as effective orders to the miner. In addition, the volume of

effective orders shall depend on Bitcoin adoption, which is represented by (C , and demand level -C .

Thus, we take the following function form of !:

! (�C , -C ; (C) = \ [1 − �C/(C]((1−UWB)C -UC . (29)

Given different successful mining probabilities, Fig. 13 depicts the impact of _� and propor-

tional inventory �C/(C , on @∗C /�C , the ratio of the optimal selling rate to inventory, for the short-run

case (C = 2014) in the high-active regime, where (C = 0.5871 and for the long-run case. As shown

in all graphs in Fig. 13, by comparing the dark solid line and dark dashed line (red dot-dashed
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Figure 13: The ratio of optimal selling rate to inventory in the high-active regime. The upper
two panels are for c = 1, while the lower two panels are for c = 1/100. The left two panels shows
the short-run case at C = 2014 with (C = 0.5871 and the right two panels show the long-run case,
i.e., C = ) . Other parameter values are based on Table 1.

line and red dotted line), we find that jump risk could increase the selling rate significantly. By

comparing the dark solid line and red dotted line (dark dashed line and red dot-dashed line), we

find that with different levels of jump risk @∗C /�C is insensitive to the change in �C/(C .

In summary, all miners approximately follow the same strategy regardless of their inventory

and successful mining probability. The conclusion is robust to different levels of successful mining

probability. This finding helps to justify the representative miner in our model.

D An Individual Miner With An Exit Option

Our model can be extended to include an individual miner’s optimal exit decision. The miner
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with an exit option aims to choose optimal stopping time g> and optimal selling rate to maximize

her present value of accumulated profits:

sup
{&D}D≥C∈AC

E
[ ∫ g>

C

4−V(D−C)
(
%D&D − � (&D, �D)

)
3D + 4−V(g0−C), (-g0 , �g0)

]
, (30)

subject to (2)-(3), (27), (6), (10)–(7), where , (-C , �C) is the value for the miner after exercising

the exit option. As before, the miner’s cost satisfies � (&C , �C) = �< + k%C&2
C /�C . In our baseline

model, the constant mining cost �< does not affect the miner’s decision and is thus assumed to be

0. In the model with an exit option, the constant mining cost �< cannot be ignored as it does affect

the exit decision.21 Actually, a miner who faces an exit option weighs mining returns and costs and

may consider leaving the mining business to avoid losses.

Once the miner decides to exit the mining business, she will liquidate her inventory to realize

her profit facing liquidation cost k%D&2
D/�D, and in this case, her inventory will only be affected

by selling. Therefore, the miner’s value function is given by

, (-C , �C) = sup
{&D}D≥C∈AC

E

∫ ∞

C

4−V(D−C)
(
%D&D − k%D&2

D/�D
)
3D, (31)

where the inventory �C satisfies 3�C = −&C3C.

We characterize the miner’s strategy by two regions: the mining region and the exit region. As

shown in Fig. 14, when demand shock is high, the return from the mining business is high and

the miner is in the mining region. Once the demand shock is too low to cover the operational cost,

the miner could be in the exit region and optimally leave the mining business. Moreover, a miner

with higher bitcoin holding faces a broader exit region because she faces a higher liquidation cost.

Therefore, a miner with higher holding requires a higher return to stay in the mining business. In

addition, we plot in Fig. 15 the impacts of _� , c, �< on the exit barriers for the short-run case.

21The mining cost, mainly electricity cost in mining business, can be estimated with average electricity cost and
average energy efficiency of mining machines. According to www.eia.gov, the average electricity cost in USA from
2013 to 2018 is 10.3092 cents per Kilowatthour. On the other hand, according to Hayes (2017), the average energy
efficiency across the mining network is around 0.4 Watt per ��/B. Hence the mining cost per )�/B is about
�< = 3.61 × 10−7 Billion USD per year.
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Figure 14: Exit and mining regions. We assume _� = 0.1, c = 14 − 7, �< = 3.614 − 7 (Billion
USD), and other default parameter values are from Table 1 with the high-activity market. The left
panel is for the short-run case, i.e., C = 2018 with (C = 0.8438, while the right panel is for the
long-run case.
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Figure 15: Impact of _� , c, and �< on exit barriers for the short-run case. We use the exit
barrier in Fig. 14 as the benchmark, compared with the barriers for different values of _� , c, and
�<. Specifically, we consider the three cases: jump risk _� is tripled, the probability of successful
mining c is doubled, and the mining cost �< is increased by 50%, respectively. The short-run case
is at C = 2018 with (C = 0.8438.

A–6

Electronic copy available at: https://ssrn.com/abstract=3780858



We find that increasing jump risk and operational cost could hasten the miner’s exit choice, while

increasing in probability of successful mining could delay the miner’s exit choice.
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