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expected returns. The results are driven by quotes, not by trades. We propose a
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averse, which reduces mispricing and lowers expected returns.
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1 Introduction

In recent times, the ratio of the number of quotes and trades, or the quote-to-trade ratio

(henceforth “QT ratio”), has become an important variable among regulators, practi-

tioners and academics, especially in connection with high-frequency trading (henceforth

“HFT”).1 In particular, the QT ratio has been at the center of many policy discussions

regarding limits on trading speed, trading fees, or trade surveillance.2,3

Despite the widespread interest in the QT ratio, the academic literature has been

relatively slow in analyzing this variable. In fact, to our knowledge this paper is the first

to directly analyze the QT ratio and its connections with liquidity, price discovery, and

the cost of capital.4 An important difficulty in any study of the QT ratio is that trades

and quotes are generated endogenously along with prices. To address this difficulty, in

this paper we begin by documenting several new empirical stylized facts about the QT

ratio. Then, we propose a theoretical model which is consistent with the stylized facts

and provides a framework to interpret our empirical results.

Empirically, we first find that the QT ratio is relatively large in stocks that are small,

1For instance, the QT ratio is often connected to HFT by regulators and governmental institutions
such as the U.S. Securities and Exchange Commission, U.S. Congressional Research Services, U.K. Gov-
ernment Office of Science, and the European Securities and Market Authorities. Moreover, exchanges
such as NASDAQ classify HFT based on the QT ratio (see Brogaard, Hendershott, and Riordan, 2014).
Among academics, the QT ratio is associated to the level of algorithmic trading (see Hendershott, Jones,
and Menkveld, 2011; Boehmer, Fong, and Wu, 2015) and high-frequency trading (see e.g., Malinova,
Park, and Riordan, 2016; Hoffmann, 2014; Conrad, Wahal, and Xiang, 2015; Brogaard, Hendershott,
and Riordan, 2016; Subrahmanyam and Zheng, 2016).

2The London Stock Exchange was the first to introduce an “order management surcharge” in 2005
based on the number of trades per orders submitted. Euronext, which comprises the Paris, Amsterdam,
Brussels, and Lisbon stock exchanges, has operated one since 2007. In 2012 DirectEdge introduced the
“Message Efficiency Incentive Program,” where the exchange pays full rebates only to traders that have
an average monthly messages-to-trade ratio less than 100 to 1. In May 2012 the Oslo Stock Exchange
introduced an order-to-execute fee, where traders that exceed a ratio of 70 for a month incur a charge
of NOK 0.05 (USD 0.0008) per order. Deutsche Börse and Borsa Italiana announced similar measures
in 2012. These fees have been revised across exchanges on a regular basis since their introduction.

3More recently, MIFID-II/R requires trading venues to establish a maximum unexecuted order-
to-transaction ratio as one of its controls to prevent disorderly trading conditions. It stipulates that
“Trading venues shall calculate the ratio of unexecuted orders to transactions for each of their members
or participants at least at the end of every trading session in both of the following ways: (a) in volume
terms: (total volume of orders/total volume of transactions); (b) in number terms: (total number of
orders/total number of transactions).” See http://ec.europa.eu/finance/securities/docs/isd/

mifid/rts/160518-rts-9_en.pdf .
4In general, trades and quotes are key in understanding price discovery, and therefore should affect

the liquidity of an asset and its cost of capital. O’Hara (2003) highlights the importance of price
discovery and liquidity to asset pricing.
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illiquid or neglected, i.e., stocks with low market capitalization, institutional ownership,

analyst coverage, trading volume, and volatility. Because investors usually demand a

return premium for illiquid assets (see Amihud, Mendelson, and Pedersen, 2005, and

the references therein) one may think that larger QT ratios are associated with larger

expected returns. Surprisingly, the opposite is true: large QT ratios are associated

with low expected returns. This relation holds both in the first part of our sample

(1994–2002) and in the second part (2003–2012). We call this relation the QT effect.

One may be tempted to attribute the QT effect to HFT activity. Hendershott et al.

(2011) find that algorithmic and high-frequency trading have a positive effect on stock

liquidity. Therefore, it is plausible that stocks with higher HFT activity (and therefore

higher QT ratio) are more liquid, and thus have a lower cost of capital. This argument,

however, does not explain our empirical finding that the QT effect also holds during

1994–2002, when HFT is not known to have a significant impact on trading activity.

Thus, we find the HFT explanation of the QT effect less likely.

Further empirical analysis shows that the QT effect is driven by the number of

quotes, and not by the number of trades. This suggests that we consider a theoretical

model in which trades occurs with exogenous frequency, while quotes arise from the the

endogenous decision of market makers to monitor the market and change their quotes

when new information arrives. To avoid the complexity of a model with multiple market

makers, we assume the existence of a representative market maker.5

We thus propose a discrete time, infinite horizon model in which a market maker

(called the “dealer” or “she”) monitors a risky asset. The fundamental value of the asset

follows a random walk. The dealer sets ask and bid quotes to maximize her expected

profit subject to a quadratic penalty on her inventory, with coefficient called inventory

aversion. Given the dealer’s quotes, traders submit buy and sell quantities which are

linear in the dealer’s pricing error, that is, in the difference between the fundamental

value and the price. We call the corresponding coefficient the investor elasticity.

The model follows Hendershott and Menkveld (2014), with two modifications. First,

5It is not obvious ex ante that a representative market maker exists: it is possible that the existence
of multiple market makers generates a surge in quotes that cannot be attributed to a single market
maker. Nevertheless, we present below evidence that the assumption is reasonable: empirically, a larger
number of market makers does not lead to a surge in quotes (relative to trades), but rather to a decrease.
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we explicitly model the dealer’s choice of monitoring frequency: by paying an upfront

cost increasing in monitoring frequency, she later receives a stream of signals about the

fundamental value. Second, we assume that even when the dealer’s pricing error is zero,

traders’ buy quantity is less than their sell quantity by twice an imbalance parameter.

To justify this imbalance in trader order flow, we provide micro-foundations for trader

behavior.6 Specifically, we assume that buy and sell quantities arise endogenously in

each trading round from risk averse informed investors who receive a random initial asset

endowment, and from noise traders who submit inelastic quantities. In equilibrium, the

trader order flow is clearly unbalanced: when the dealer’s pricing error is zero, because

of their risk aversion investors prefer to sell the asset rather than buy it. Our micro-

foundations show that investors’ risk aversion also affects investor elasticity: low risk

aversion causes investors to trade with large elasticity.

Because the trading frequency is normalized to one in our model, the dealer’s moni-

toring frequency can be interpreted as the quote-to-trade ratio. In equilibrium, the QT

ratio depends of several parameters: the investor elasticity, the dealer’s inventory aver-

sion, her monitoring precision, and her monitoring cost. First, the QT ratio is increasing

in the investor elasticity. Indeed, when the investor elasticity is large, the dealer’s quotes

must stay close to the fundamental value: otherwise, they would attract an unbalanced

order flow and the dealer would pay a large inventory penalty. But to keep quotes

close to the fundamental value, the dealer must monitor the market frequently, which

generates a large QT ratio.

Second, the QT ratio is decreasing in the monitoring precision: a small monitoring

precision makes the dealer monitor the market frequently. This result justifies our puz-

zling empirical finding that the QT ratio is higher in neglected, difficult-to-understand

stocks: in these stocks the dealer expects to get less precise signals, and must therefore

increase the frequency of monitoring, which is equivalent to increasing the QT ratio.

Third, the QT ratio is increasing in the inventory aversion: when the inventory

aversion is larger, the dealer needs to keep quotes closer to the fundamental value, and

hence must monitor the market more frequently. This result provides an additional

6Order flow imbalance is important in our model, since the cost of capital turns out to be pro-
portional to the imbalance parameter. In Hendershott and Menkveld (2014), the trader order flow is
assumed to be exogenous and with an imbalance parameter of zero.
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prediction of the model: the QT ratio is smaller in stocks in which the dealer has a

lower inventory aversion. The inventory aversion of the representative dealer in a stock

is not observable, but in practice we can proxy its inverse with the number of market

makers in that stock.7 We thus obtain the following suprising prediction: stocks with a

larger number of market makers have a lower QT ratio. This prediction is confirmed in

the data. Intuitively, competition among market makers does not lead to a surge in the

number of quotes, but rather to a larger aggregate risk bearing capacity and hence to a

smaller need to monitor the market and to change quotes.8

Fourth, the QT ratio is decreasing in monitoring costs: a smaller monitoring cost

increases the dealer’s frequency of monitoring. This finding may explain the recent dra-

matic increase in the QT ratio observed in Figure 1. Indeed, it is plausible that the

recent increase in trade automation has translated into a sharp decrease in dealer mon-

itoring costs, which according to our results predicts a large increase in the equilibrium

QT ratio.

The equilibrium quotes are governed by an intermediation irrelevance result: com-

pared to her value forecast, the dealer’s mid-quote is on average set at a discount that is

independent of the dealer’s characteristics: inventory aversion, cost of monitoring, and

signal precision.9 Intuitively, the average pricing discount must be such that the dealer

does not expect her inventory to either increase or decrease. Therefore, the dealer’s

discount depends only on parameters of the order flow: the imbalance parameter and

investor elasticity.10

7Hendershott and Menkveld (2014) prove the equivalence, up to a quadratic approximation, between
a dealer’s inventory aversion and her (absolute) risk aversion. A standard risk sharing result implies
that the risk tolerance (inverse risk aversion) of a representative trader is the sum of the individual
traders’ risk tolerance. Thus, assuming a constant risk tolerance of individual marker makers, a larger
number of them translates into a higher risk tolerance for the representative dealer.

8This result also justifies our assumption of a representative dealer: see Footnote 5.
9The intermediation irrelevance result extends also to the quotes themselves: the equilibrium bid-

ask spread is the ratio of two parameters that describe the trader order flow.
10We stress that the intermediation irrelevance result refers to the average discount. This value

coincides with the equilibrium discount in a particular state of the system, the neutral state, when
the dealer’s inventory is such that her quotes are not expected to either increase or decrease. In the
language of Hendershott and Menkveld (2014), in the neutral state there are no price pressures. In
other states, when the inventory deviates from its neutral value, the speed of mean reversion of the
pricing discount to its neutral value does in fact depend on the dealer’s characteristics, and there is no
longer an intermediation irrelevance. Instead, in these states there are price pressures in the sense of
Hendershott and Menkveld (2014).
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We next discuss the cost of capital, which in our model is in one-to-one relation with

the dealer’s pricing discount. The intermediation irrelevance implies that the cost of

capital should not be affected by the dealer’s characteristics, but only by the properties

of the trader order flow. In particular, the cost of capital does depend on investor

elasticity. Consider an increase in investor elasticity, which means that investors trade

more aggressively on the dealer’s pricing error. Therefore, the dealer must (i) monitor

the market more often to reduce the pricing error; and (ii) reduce the pricing discount

by keeping the mid-quote closer to her forecast. The first fact translates into an increase

in monitoring frequency, hence an increase of the QT ratio. The second fact translates

into a decrease of the pricing discount, hence a decrease of the cost of capital.

Putting these facts together, we obtain the QT effect: an inverse relation between

the QT ratio and the cost of capital. This aligns with our main empirical finding. Note

that this relation is driven by properties of the order flow, and at a more fundamental

level (if we include our micro-foundations) by the investors’ risk aversion.

Following the logic of our intermediation irrelevance result, we predict that the num-

ber of market makers in a particular stock should not affect its cost of capital. This

additional empirical prediction is confirmed by the data: in our sample, the expected

return of NASDAQ-listed stocks does not depend on the number of dealers.

Our paper contributes to a large literature on market microstructure and asset pric-

ing (see Amihud and Mendelson, 1986; Amihud, 2002; Brennan and Subrahmanyam,

1996; Chordia, Roll, and Subrahmanyam, 2002, 2000; Chordia, Subrahmanyam, and

Anshuman, 2001; Easley, Hvidkjaer, and O’Hara, 2002; Duarte and Young, 2009; Ami-

hud et al., 2005, among many others). While the relation between the quote-to-trade

ratio and the cost of capital has not (to our knowledge) been investigated before, our

empirical analysis follows the example of many papers that find stock characteristics

that matter for average returns (see Harvey, Liu, and Zhu, 2016).

Our theoretical model is closest in spirit to the price pressures model of Hendershott

and Menkveld (2014). However, our focus is very different, as we study the quote-to-

trade ratio and the cost of capital. We thus depart from their model and endogenize

the dealer’s monitoring frequency, which allows us to define the quote-to-trade ratio. A

second departure is that we introduce imbalances in the order flow (justified by investor
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risk aversion), which allows us to obtain a nonzero cost of capital. To avoid the time-

varying price pressures that are the focus of Hendershott and Menkveld (2014), we define

the cost of capital in the neutral state where the price pressure is zero. The dealer has a

positive inventory in this state, and the cost of capital is positive. By contrast, in their

paper the cost of capital is zero.

Our paper has implications for the burgeoning literature on High-Frequency Trading

(see for example Menkveld, 2016, and the references therein). The recent dramatic

increase in the QT ratio (see Figure 1) has been widely attributed to the emergence

of algorithmic trading and HFT (see e.g. Hendershott et al., 2011). In our theoretical

framework, this is consistent with a sharp decrease in dealer monitoring costs caused by

trade automation. Our main focus, however, is on the relation between the QT ratio

and the cost of capital. We document a new empirical regularity called the QT effect:

large QT ratios are associated with low expected returns.

Our theoretical results provide a possible interpretation of the QT effect: The inter-

mediation irrelevance result implies that the cost of capital does not depend on dealer

characteristics, but rather on properties of the order flow, and at a more fundamental

level on investors’ risk aversion. In particular, a decrease in investor risk aversion in-

creases the QT ratio, while it decreases the cost of capital. Viewed through the lens of

our model, other explanations of the QT effect must account for why investor behavior

is altered. For instance, if HFT activity changes dealer characteristics but not investors’

preferences, it may affect the QT ratio, but not the cost of capital. One piece of evidence

that the QT effect is unlikely to be driven by HFT activity is that the QT effect works

also in the first part of our sample (1994–2002), before the emergence of HFT.

2 Data and Summary Statistics

2.1 Data

To construct the quote-to-trade ratio, we use the trades and quotes reported in TAQ for

the period June 1994 to October 2012.11 Using TAQ data allows us to construct a long

11Our sample starts in June 1994, as TAQ reports opening and closing quotes but not intraday
quotes for NASDAQ-listed stocks prior to this date.
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time series of the variable QT at the stock level, which is best suited to conduct asset

pricing tests. We retain stocks listed on the NYSE, AMEX, and NASDAQ for which

information is available in TAQ, Center for Research in Security Prices (CRSP), and

Compustat.

Our sample includes only common stocks (Common Stock Indicator Type = 0),

common shares (Share Code 10 and 11), and stocks not trading on a “when issued”

basis. Stocks that change primary exchange, ticker symbol, or CUSIP are removed from

the sample (Hasbrouck, 2009; Goyenko, Holden, and Trzcinka, 2009; Chordia, Roll, and

Subrahmanyam, 2000). To avoid extremely illiquid stocks, we also remove stocks that

have a price lower than $2 and higher than $1,000 at the end of a month.12 To avoid

look-ahead biases, all filters are applied on a monthly basis and not on the whole sample.

There are 10,345 individual stocks in the final sample.

Throughout the paper, we follow Shumway (1997) in using returns of −30% for

the delisting month (delisting codes 500 and 520–584).13 All returns are calculated

using bid-ask midpoint prices, adjusted for splits and cash distributions, to reduce mar-

ket microstructure noise effects on observed returns (Asparouhova, Bessembinder, and

Kalcheva, 2010, 2013). Risk factors are from Kenneth French’s website for the period

1926 to 2017. The PIN factor is from Sören Hvidkjaer’s website and is available from

1984 to 2002. Table D.1 in the Appendix reports the definitions and the construction

details for all variables and Table D.2 in the Appendix provides the summary statistics.

Consistent with the literature (see Angel, Harris, and Spatt, 2011; Brogaard, Hagströmer,

Nordén, and Riordan, 2015), we define QT as the monthly ratio of the number of quote

updates at the best national price (National Best Bid Offer) to the number of trades.

By quote updates we refer only to changes either in the ask or bid prices, and not to

depth updates at the current quotes.14 Specifically, we calculate the QT variable for

12Results are quantitatively similar when removing stocks with price < $5 and are available from
the authors upon demand.

13Shumway (1997) reports that the CRSP database has a systematic upward bias on returns of
certain delisted stocks. This is because negative delisting returns are coded as missing when the
delisting is due to performance reasons.

14The results are qualitatively similar if we define QT using the number of both quote and depth
updates in the numerator. However, using quotes only is more consistent with our theoretical model in
Section 4.
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stock i in month t as the ratio:

QTi,t =
N(quotes)i,t
N(trades)i,t

, (1)

where N(quotes)i,t is the number of quote updates in stock i during month t, and

N(trades)i,t is the number of trades in stock i during month t.

2.2 Determinants of the Quote-to-Trade Ratio

In this section, we examine the summary statistics, time series and the cross-sectional

determinants of the QT ratio. Table 1 reports the average firm-level characteristics of

ten portfolios sorted on the QT ratio. Specifically, for each month t we divide all stocks

into decile portfolios based on their QT during that month. The QT portfolio 1 has the

lowest QT, and the QT portfolio 10 has the highest QT. For each QT decile, we compute

the cross-sectional mean characteristic for month t+ 1 and report the time-series mean

of the cross-sectional average characteristic.15

Column (5) in Table 1 shows that the average firm size, as measured by market

capitalization, is decreasing in QT. The lowest QT stocks (stocks in QT decile 1) have

an average market capitalization of $8.9 billion, while the highest QT stocks (stocks in

QT decile 10) have an average capitalization of $0.8 billion. Column (6) shows that the

average monthly trading volume decreases from $1.7 billion for the lowest QT stocks

to $0.06 billion for the highest QT stocks. The average monthly trading volume in

column (6) decreases from $1.7 billion for low QT stocks to $0.06 billion for high QT

stocks. Columns (8)–(10) show the averages of three illiquidity measures: the quoted

spread, the relative spread, and the Amihud (2002) illiquidity ratio (ILR). The highest

QT stocks are roughly three times more illiquid that the lowest QT stocks. The lowest

QT stocks are almost twice as volatile as the highest QT stocks, in column (11).

Table 2 formally examines the relation of the above variables as determinants of QT

in a regression setting. The dependent variable is the monthly QT measure. We present

the results from a panel regression with various specifications for fixed effects and with

15The order of the different characteristics across QT portfolios remains unchanged, when we com-
pute the cross-sectional characteristics in month t.
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standard errors clustered at the stock and month level. Columns (1)-(4) include vari-

ables known to affect expected returns. We find that QT is higher for stocks that have

low market capitalization, low institutional ownership, low or no analyst coverage, low

trading volume, and low volatility. Generally these are stocks that are neglected by an-

alysts or investors, and are difficult to understand/evaluate (see Hong, Lim, and Stein,

2000; KUMAR, 2009).16

Stylized fact 1 (SF1): Neglected stocks (with low market capitalization,

institutional ownership, analyst coverage, trading volume, and volatility)

have higher quote-to-trade ratios.

This result is puzzling, because in neglected stocks one may expect a lower QT ratio

(after controlling for trading volume), as market makers have less precise information

based on which to change their quotes. But in our theoretical model, in Section 4.3, a

market maker with less precise information actually monitors more often and therefore

generates a higher QT ratio.

It is common practice among academics, practitioners and regulators to associate

QT with HFT activity (several examples are given in Footnote 1). Results in Tables 1

and 2 suggest that using QT as a proxy for HFT activity must be done with caution. For

instance, HFTs are known to trade in larger and more liquid stocks (Hagströmer and

Nordén, 2013; Brogaard et al., 2015). In addition, HFTs are more likely to trade in stocks

with high institutional ownership, if indeed HFT activity stems from their anticipation of

agency and proprietary algorithms of institutional investors such as mutual and hedge

funds (O’Hara, 2015). But stylized fact SF1 above shows that QT is actually lower

in stocks that are large, liquid, or with high institutional ownership. Thus, simply

associating HFT activity with QT can be misleading.

16In column (5) of Table 2, we include also the number of registered market makers in a particular
stock. This is discussed in Section 3.2, as part of the stylized empirical fact SF4.
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2.3 Time Series of Quote-to-Trade Ratios

Figure 1 Panel A shows the time series of the equally weighted natural logarithm of

monthly QT over the sample period. We note the substantial increase in QT during

this time. Panel B is similar to Panel A, but displays separately the evolution of quotes

and trades. It shows that the increase in QT is driven by the explosion in quote updates.

For instance, in June 1994 the total number of quotes and the total number of trades

are roughly equal to each other, at about 1.1 million each. In August 2011, the peak

month for both quotes and trades, the number of quotes reached 1,445 million, while

trades reached 104 million, an increase ten times larger for quotes than for trades.

Stylized fact 2 (SF2): Quote-to-trade ratios have increased over time.

This stylized fact can be explained theoretically by a decrease in market maker mon-

itoring costs: when these costs are smaller, market makers monitor more often, hence

the QT ratio increases (see Section 4.3). Both SF2 and its explanation are consistent

with previous literature.17 Hendershott et al. (2011) study a change of NYSE market

structure in 2003 called “Autoquote” and argue that this change resulted in a decrease in

monitoring costs among market participants, and especially among algorithmic traders.

At the same time, they document an increase in their proxy for algorithmic trading,

which is close in spirit to our QT ratio.18 Angel et al. (2011) argue that the prolif-

eration since 2003 of algorithmic and high-frequency trading has lead to substantial

increases in both the number of quotes and trades.

3 Quote-to-Trade Ratio and Stock Returns

In this section, we study the cross-sectional relation between the quote-to-trade ratio

and stock returns. We start with an investigation of abnormal expected returns to

17In untabulated results, we find that the introduction of Autoquote substantially increases the QT
ratio, but it does not affect the relation of QT and the other variables presented in Table 2. These
results are available from the authors upon demand.

18See Figure 1 in Hendershott et al. (2011). Their proxy for algorithmic trading is defined as the
negative of dollar trading volume divided by the number of electronic messages (incuding electronic
order submissions, cancellations and trade reports, but excluding specialist quoting or floor orders).
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account for various risk factors through portfolio sorts, and then examine other known

cross-sectional return predictors through Fama-MacBeth regressions.

3.1 Univariate Analysis

First, we test whether the return differential between the low and high QT stocks can

be explained by the market, size, value, momentum, and liquidity factors. Each month,

all stocks are divided into portfolios sorted on QT at time t. Portfolio returns are the

equally weighted average realized returns of the constituent stocks in each portfolio in

month t+1.19 We estimate individual portfolio loadings from a 24-month rolling window

regression:

rp,t+1 = αp +
J∑
j=1

βp,jXj,t + εp,t+1, (2)

where rp,t+1 is the return in excess of the risk free rate for month t + 1 of portfolio

p constructed in month t based on the QT level, and Xj,t is the set of J risk factors:

excess market return (rm), value HML (rhml), size SMB (rsmb), Pástor and Stambaugh

(2003) liquidity (rliq), momentum UMD (rumd), and PIN (rPIN). Table 3 reports time

series averages of alphas obtained from 24-month rolling window regressions.20 We

present results from several asset pricing models that include several risk factors: CAPM

(market), FF3 (market, size, value), FF3+PS (with the Pástor and Stambaugh (2003)

traded liquidity factor), FF4+PS (with momentum), and FF4+PS+PIN (probability of

informed trading, PIN).21

Table 3 reports alphas for 10, 25, and 50 QT-sorted portfolios. The low-QT portfolio

(QT1) has a statistically significant monthly alpha (α1) that ranges between 0.60% and

1.88% across various portfolio splits and asset pricing models. The high-QT portfolio

alphas range from −0.34% to 0.37%, but are statistically not different from zero in all

specifications. This suggests that the high-QT portfolios are priced well by the factor

19We also conduct the analysis using value weighted portfolio returns and the results do not change
quantitatively.

20Since we are using portfolios conditional on QT, we only have portfolio returns from July 1994. We
use a 24-month estimation window to increase the sample period. For the Fama-MacBeth individual
stock regressions in the next section, we use a 48-month rolling window to estimate factor loadings.

21The PIN factor from Sören Hvidkjaer’s website is available only until 2002, therefore we restrict
our analysis in the last column of Table 3 to the period 1994–2002. This result is discussed in Section
3.3, as part of the sub-sample robustness analysis.
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models. However, the risk-adjusted return difference between the low-QT and high-

QT portfolios is statistically significant and varies between 0.52% to 1.91% per month

across different portfolio splits. Note that the profitability of the long-short strategy

derives mainly from the long position (the performance of the low-QT portfolio QT1)

rather than from the short position (the performance of the high-QT portfolio QT10).

Therefore, short-selling constraints should not impede the implementation of a strategy

that exploits the main regularity in Table 3.

3.2 Fama-MacBeth Regressions

To control for other predictive variables in the cross-section of returns, we estimate

Fama and MacBeth (1973) cross-sectional regressions of monthly individual stock risk-

adjusted returns on different firm characteristics including the QT variable. We use

individual stocks as test assets to avoid the possibility that tests may be sensitive to the

portfolio grouping procedure. First, we estimate monthly rolling regressions to obtain

individual stocks’ risk-adjusted returns using a 48-month estimation window. We use

a similar procedure as in Brennan, Chordia, and Subrahmanyam (1998) and Chordia,

Subrahmanyam, and Tong (2011), to obtain risk-adjusted returns:

rai,t = ri,t −
J∑
j=1

β̂i,j,t−1Fj,t, (3)

where ri,t is the monthly return of stock i in excess of the risk free rate, β̂i,j,t−1 is the

conditional beta estimated by a first-pass time-series regression of risk factor j estimated

for stock i by a rolling time series regression up to t − 1, and Fj,t is the realized value

of risk factor j at t. Then, we regress the risk-adjusted returns from equation (3) on

lagged stock characteristics:

rai,t = c0,t +
M∑
m=1

cm,tZm,i,t−k + ei,t, (4)
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where Zm,i,t−k is the characteristic m for stock i at time t−k, and M is the total number

of characteristics. We use k = 1 months for all characteristics.22 The procedure ensures

unbiased estimates of the coefficients cm,t, without the need to form portfolios, because

errors in the estimation of the factor loadings are included in the dependent variable.

The t-statistics are obtained using the Fama-MacBeth standard errors with Newey-West

correction with 12 lags.

Table 4 reports the Fama and MacBeth (1973) coefficients for cross-sectional regres-

sions of individual stock risk-adjusted returns on stock characteristics. We consider the

risk factors from a four-factor Fama–French model (market, size, value, and momentum),

with an additional Pástor and Stambaugh (2003) traded liquidity factor. Column (1)

includes only the QT ratio. QT has a highly significant and negative coefficient implying

that stocks with higher QT have lower next month risk-adjusted returns. We call this

the QT effect.

Because the QT effect might be driven by the correlation of QT with liquidity, we

include two illiquidity proxies in the regression: the bid-ask spread (SPREAD) and the

Amihud (2002) illiquidity ratio (ILR). Column (2) of Table 4 includes QT and SPREAD,

column (3) includes QT and ILR, and column (4) includes QT and both SPREAD and

ILR. The coefficients on both illiquidity proxies are positive and significant, consistent

with higher illiquidity causing higher returns (see Amihud, 2002). However, the inclu-

sion of these known illiquidity proxies does not reduce the effect of QT, which remains

negative and significant in all specifications (2)–(4). In column (5), we introduce other

firm characteristics that affect expected returns. With these additional control vari-

ables, the coefficient on QT remains negative and highly significant, while the illiquidity

proxies SPREAD and ILR become both insignificant.

Table 5 explores the question whether the QT effect is driven by the number of quotes

or by the number of trades. Column (1) shows that when conditioning on quotes and

trades as separate explanatory variables, it is the number of quotes that matters most

for risk-adjusted returns. This effect is economically and statistically large. Introducing

other liquidity-based control variables in columns (2)–(4) takes away the statistical sig-

22Panel A of Table D.3 in the Appendix shows the estimation results where k = 2 (excluding the
past return variables R1 and R212).
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nificance of the number of trades, but does not affect the number of quotes. Using all

firm characteristics as well as liquidity measures as control variables, column (6) shows

that the predictive power derives from quotes and not from trades.

Stylized fact 3 (SF3): Higher quote-to-trade ratios predict lower stock

returns in the cross-section (the QT effect). The predictability is driven by

the number of quotes rather than the number of trades.

This result is puzzling if we compare it with the stylized fact SF1, which shows that

the QT ratio is higher in neglected stocks, and in particular in smaller or more illiquid

stocks. But, as Table 4 shows, these stocks also tend to have higher expected returns,

which appears to contradict SF3. Our results then suggest that there is substantial

QT variation that is negatively correlated with expected returns even after conditioning

on size and illiquidity. In other words, the QT effect remains even across stocks in a

portfolio with similar size and illiquidity. The QT effect therefore is distinct from the

known effects of other variables: spread, ILR, trading volume, volatility. We thus add

to the literature that explores how trading activity and market structure are connected

with asset returns (see Amihud and Mendelson, 1986; Amihud, 2002; Brennan and

Subrahmanyam, 1996; Chordia et al., 2002, 2000, 2001; Easley et al., 2002; Duarte and

Young, 2009, among many others).

One concern is that the QT effect might be driven by the number of market makers

that are registered in a stock: it is plausible that a larger number of active market

makers drives up the QT ratio because of increased competition, but also decreases the

required expected return. We find that neither of these two stories are supported in the

data. First, column (5) of Table 2 includes the number of registered market makers in a

particular stock (MM ) as a control variable. This results in a smaller sample, because

the number of market makers in only available for NASDAQ-traded stocks. Neverthe-

less, we find that the number of market makers has a significant effect on the QT ratio,

except that the coefficient is negative: a larger number of market makers in a stock

corresponds to a lower QT ratio. Second, column (6) of Table 4 shows that the number

of market makers in a particular stock has no effect on its cost of capital. We collect
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these empirical resuslts in the following stylized fact.

Stylized fact 4 (SF4): The number of market makers in a NASDAQ stock

has an inverse relation with the quote-to-trade ratio and no relation to the

stock’s expected return.

To interpret SF4, recall that the number of market makers can be regarded a proxy

for the unobserved risk tolerance of a representative dealer, and also that a dealer’s risk

aversion is in one-to-one correspondence with her inventory aversion (see Footnote 7).

With this interpretation, SF4 implies that a smaller inventory aversion of the represen-

tative dealer is associated to a smaller QT ratio, but is unrelated to the stock’s expected

return.

One prediction of our model is that a dealer with low inventory aversion monitors

infrequently (because she is not too concerned with her inventory), and therefore gen-

erates a low QT ratio (see Section 4.3). The first part of SF4 shows that this model

prediction holds in the data. The result is surprising: one may think that if the rep-

resentative dealer’s inventory aversion is low, or equivalently (if we accept the proxy)

if the number of market makers is high, then their competition drives up the quoting

activity. But in the data the opposite result is true. Thus, our results suggest that high

competition among market makers leads to a high aggregate risk bearing capacity, and

hence to a small need for the market makers to monitor, which implies a low QT ratio.

A second prediction of our model arises from the intermediation irrelevance result:

the expected return of a stock is not affected by the characteristics of the dealer in

that stock (the intermediary), but only on the properties of the traders’ order flow (see

Sections 4.4 and 4.5). In particular, the stock’s expected return should not be affected by

the dealer’s inventory aversion. But according to the second part of SF4 this prediction

is true in the data, as long as we consider the number of market makers as a proxy for

the representative dealer’s (inverse) inventory aversion.
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3.3 Robustness

In this section, we verify the robustness of our main empirical result: the QT effect. In

Section 3.1 we have considered only one-month holding (portfolio rebalancing) periods.

One could therefore raise the concern that the QT effect is caused by temporary price

effects. For example, suppose stocks with high or low realized returns attract HFT

activity and get a temporary spike in the QT ratio. This type of explanation implies

that the QT effect is only a short-term phenomenon. If that were the case, we would

expect stocks to switch across QT portfolios, and the alphas of a QT long-short strategy

to decrease over longer holding periods.

To test the reversal hypothesis, we examine the average monthly risk-adjusted returns

(alphas) of the QT long-short strategies for different holding and formation periods. We

use the calendar-time overlapping portfolio approach of Jegadeesh and Titman (1993) to

calculate post-performance returns. We assign stocks into portfolios based on QT levels

at four different formation periods and examine the average QT level for these portfolios

in month t + k keeping the portfolio constituents fixed for k months, where k ranges

from 1 to 12 months. We use four formation periods, i.e., we condition on different sets

of information about QT: time t, and the 3, 6, and 12-month moving average QT level.

Figure 2 shows the long-short alphas from a five-factor model (Fama-French three-

factor model plus momentum and liquidity) for strategies that long the low-QT portfolio

and short the high-QT portfolio, at different holding horizons and formation periods.

The holding horizons reflect the number of months for which the portfolio constituents

are kept fixed after the formation month, i.e., portfolios are rebalanced every k months.

We construct the long-short strategies for 25 portfolios and examine 4 different formation

periods.23 The figure shows that the QT effect is very persistent. The one month

formation and holding period portfolio has the highest alpha of 1.25%. Overall, the

long/short alphas after a year of both formation and holding are 0.60% per month and

highly statistically significant.

Another robustness check is to verify whether the QT effect holds during both parts

of our sample: 1994–2002 and 2003–2012. Indeed, since QT is often used as a proxy for

23The results are robust to other factor model specifications and to the creation of more portfolios.
These results are available from the authors upon request.
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HFT (see Footnote 1), we would like to study the information content of QT beyond

that of HFT. To omit the potential influence of HFT in our study, we conduct both the

portfolio analysis and Fama-MacBeth regressions for the two subsamples June 1994 to

December 2002 and January 2003 to October 2012. The first subsample is unaffected by

changes in technology and algorithmic trading, as Hendershott et al. (2011) document

the proliferation of algorithmic and electronic trading only after 2003.

Column (5) in Table 3 (where we include PIN) only covers the first part of the sam-

ple June 1994 to December 2002, due to the availability of the PIN factor returns. The

effect of QT on risk-adjusted returns using long-short portfolios are strong and even

larger for this subsample, in the pre-algorithmic trading period. The long-short alpha

in column (5) is the highest in all risk specifications. Table D.4 in the Appendix presents

the subsample analysis for the Fama-MacBeth regressions, equivalent to column (5) in

Table 4. The effect of QT on risk-adjusted returns is large and statistically significant in

the pre- and post-2002 period, despite the reduction in power due to the lower number

of time-series observations.

Stylized fact 3′ (SF3′): The relation between quote-to-trade ratio and

cross-sectional stock returns holds at longer predictability horizons and is

persistent throughout the sample.

3.4 Summary of the Empirical Findings

Our empirical results fall under two large categories: the determinants of the QT ratio of

stocks, and the relation of the QT ratio with stock expected returns. We find that high

QT is prevalent among neglected stocks, i.e., stocks that have low market capitalization,

institutional ownership, analyst coverage, trading volume, and volatility (SF1). In the

time series, the QT ratio has increased significantly over time (SF2). Yet, the relation

between the QT ratio and expected returns is stable over time (SF3′). This relation,

called the QT effect, is that stocks with high QT ratio tend to have low expected returns

(SF3). The QT effect appears to be distinct from other known effects on expected returns

of spread, ILR, trading volume, volatility, etc. Including the number of market makers
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among explanatory variables displays an inverse relation with the QT ratio, but does

not affect expected returns (SF4). In the next section we propose a theoretical model

that is consistent with all these stylized facts and provides an interpretation for them.

4 Model of the Quote-to-Trade Ratio

This section builds a model of the quote-to-trade ratio, and relates it to the cost of

capital and other variables of interest. The model is close in spirit to the the price

pressures model of Hendershott and Menkveld (2014, henceforth HM2014) and to the

dynamic inventory control model of Ho and Stoll (1981). As in HM2014, we consider

a representative intermediary who faces stochastically arriving traders with elastic liq-

uidity demands. At first we consider the liquidity demand in reduced form, but in the

Appendix C we add micro-foundations.

Because the focus of our paper is on the quote-to-trade ratio, we depart from HM2014

and endogenize the intermediary’s monitoring frequency. As a second departure, we

introduce an imbalance in the liquidity demand (justified by investor risk aversion),

which allows us to obtain a nonzero cost of capital. To avoid the time-varying price

pressures that are the focus of HM2014, we define the cost of capital for a neutral state

in which the price pressure is zero. In equilibrium, the intermediary has a positive

inventory in this state, and the cost of capital is positive.

4.1 Environment

The market is composed of one risk-free asset and one risky asset. Trading in the risky

asset takes place in a market exchange, at discrete dates t = 0, 1, 2, . . . such that the

trading frequency is normalized to one. There are two types of market participants:

(a) one monopolistic market maker called the dealer (“she”) who monitors the market

and sets the quotes at which others trade, and (b) traders, who submit market orders.

Assets. The risk-free asset is used as a numeraire and has a return of zero. The

risky asset has a net supply of M > 0. It pays a dividend D before each trading date.

The ex-dividend fundamental value vt follows a continuous random walk process for
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which the increments have variance per unit of time equal to Σv = σ2
v , where σv is the

fundamental volatility. We interpret vt for t large as the “long-run” value of the asset;

in the high frequency world, this can be taken to be the asset value at the end of the

trading day, and the increments are then the short term changes in value due to the

arrival of new information. Alternatively, vt can be considered as the cash value that

shareholders receive at liquidation, an event which can occur in each period with a fixed

probability.24

Dealer Monitoring. The dealer monitors the market by periodically obtaining

signals about the fundamental value. Monitoring occurs at times 0
q
, 1
q
, 2
q
, . . ., where q is

a positive number called the monitoring rate.25 If the monitoring time coincides with the

trading time (that is, if the monitoring time is an integer), we assume that monitoring

occurs before trading. Per unit of time, the cost of monitoring at the rate q is C(q),

which is an increasing function of q.

Monitoring consists in the dealer receiving a set of signals about the fundamental

value at each monitoring time. Denote by wt the dealer’s forecast, which is the expected

fundamental value of the asset, conditional on all the signals received until time t. We

define the precision function Ft as the inverse variance of the forecast error. We take a

reduced form approach, and assume that the precision function does not depend on t,

and is a decreasing function of the monitoring rate q:26

F (q) =
1

Var(vt − wt)
. (5)

The intuition is that an increase in the monitoring rate produces more precise forecasts

for the dealer.

24Suppose there exists π ∈ (0, 1) such that the asset liquidates in each period with probability π, in
which case the shareholders receive vt per share. Then it can be showed that the expected profits of a
trader with quantities bought and sold at t equal to −Qbt and −Qst , respectively, has the form described
in equation (8) with β = 1− π, and γ = C(q) = 0.

25With this interpretation of monitoring, q should take only integer values. However, we allow q
to be any positive real number because we take a reduced form approach and specify directly the
signal precision that the dealer derives from monitoring (micro-foundations for the signal structure are
provided in Appendix A.) Ideally, we would like to solve a model in which trading and monitoring
follow independent Poisson processes with intensities 1 and q, respectively. That model is much more
difficult to solve, although we conjecture that the equilibrium is qualitatively the same. Thus, in the
rest of the paper we say, with a slight abuse of terminology, that monitoring takes place at a rate q > 0.

26In Appendix A we show how to generate F (q) using a specific signal structure.
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To simplify the equilibrium formulas, we assume that the monitoring cost C(q) and

the precision function F (q) are linear increasing functions,

C(q) = c q, F (q) = f q, (6)

where c and f are positive constants.27

Dealer’s Quotes and Objective. After monitoring at time τ , the dealer sets the

quotes: the ask quote aτ and the bid quote bτ . We therefore interpret the monitoring

rate q as the quote rate.28 Let Iτ be the dealer’s information set after monitoring at τ ,

and wτ = Eτ (vτ ) = E(vτ |Iτ ) her forecast of the asset value.

In general, a quoting strategy for the dealer is a set of processes at (the ask quote)

and bt (the bid quote) which are measurable with respect to the dealer’s information

set. Let xt be the dealer’s inventory in the risky asset just before trading at t.29 If Qb
t

is the aggregate buy market order at t, and Qs is the aggregate sell market order at t,

the dealer’s inventory evolves according to

xt+1 = xt −Qb
t +Qs

t . (7)

Then, for a given quoting strategy, the dealer’s expected utility at τ is equal to the

expected profit from date τ onwards, minus the quadratic penalty in the inventory, and

minus the monitoring costs:

Eτ

∞∑
t=τ

βt−τ
(
xtD +

(
(vt − bt)Qs

t + (at − vt)Qb
t

)
− γ x2

t − C(q)
)
, (8)

where β ∈ (0, 1) and γ > 0. Thus, the dealer maximizes expected profit, but at each t

faces a utility loss that is quadratic in the inventory. Note that except for the dividend

27In the proof of Proposition 2, we describe the equilibrium conditions for more general F and C.
28Technically, there is no need for the dealer to change her quotes when no trading is expected (at

noninteger monitoring times k/q). But, since the dealer incurs no cost from modifying quotes, it makes
sense intuitively to allow her to adjust the quotes to new information, especially if she is not certain that
no trading takes place at that time. Thus, in such a “trembling hand” equilibrium the dealer’s quote
rate is indeed equal to q. This is consistent also with the alternative model described in Footnote 25.

29We let the initial inventory x0 as a free parameter, although later (in Section 4.5) we set it equal to
the parameter x̄ from equation (15), which is the long-term mean of the dealer’s equilibrium inventory.
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payment this utility function is essentially the same as the one specified in HM2014.30

Traders’ Order Flow. Upon observing the quotes at (the ask quote) and bt (the

bid quote), traders submit at t the following aggregate market orders:

Qb
t =

k

2
(vt − at) + `−m+ εbt , with εbt

IID∼ N (0,ΣN/2) ,

Qs
t =

k

2
(bt − vt) + `+m+ εst , with εst

IID∼ N (0,ΣN/2) ,

(9)

where Qb
t is the buy demand and Qs

t is the sell demand. The numbers k, `, m and ΣN are

exogenous constants. Together, Qb
t andQs

t are called the liquidity demand, or the traders’

order flow. The parameter k is the investor elasticity, ` is the inelasticity parameter,

and m is the imbalance parameter.31 In Appendix C, we provide micro-foundations for

the liquidity demand.

Equilibrium Concept. Because the dealer is a monopolist market maker in our

model, the structure of the game is simple. First, before trading begins (before t = 0),

the dealer chooses a constant monitoring rate q. Second, in the trading game the

dealer continuously chooses the quotes (the ask quote at and the bid quote bt) such that

objective function (8) is maximized.

4.2 Optimal Quotes

We solve for the equilibrium in two steps. In the first step (Section 4.2), we take the

dealer’s monitoring rate q as given and describe the optimal quoting behavior. In the

second step (Section 4.3), we determine the optimal monitoring rate q as the rate which

maximizes the dealer’s expected utility.

We thus start by fixing the monitoring rate q. The optimal behavior of the dealer

in the trading game is described in Proposition 1. This result is obtained by applying

30This penalty can be justified either by the dealer facing external funding constraints, or by her
being risk averse. The latter explanation is present in HM2014 (Section 3). There, the dealer max-
imizes quadratic utility over non-storable consumption. To solve the dynamic optimization problem,
HM2014 consider an approximation of the resulting objective function (see their equation (16)). This
approximation coincides with our dealer’s expected utility in (8) when C(q) = 0.

31HM2014 use a similar reduced form approach, except that they set m = 0. By providing micro-
foundations for traders’ order flow, we find that m > 0 when investors are risk averse and the asset is
in positive net supply.
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standard methods in linear-quadratic dynamic programming.32 The solution depends

on a few parameters that describe traders’ order flow in (9).

Consider the game described in Section 4.1, with positive parameters D, k, `,m,ΣN .

Define the following constants:

h =
`

k
, ω =

1− β
βk

, α = β
(γ − ω) +

√
(γ − ω)2 + 4γ

βk

2
,

λ =
α

1 + kα
=
−(γ + ω) +

√
(γ − ω)2 + 4γ

βk

2
,

∆ =
1− β + 2kα

k(1− β + kα)
m− β

2(1− β + kα)
D.

(10)

The next result describes the optimal quotes set by the dealer.

Proposition 1. The dealer’s optimal quotes at t = 0, 1, . . . are

at = wt − λxt + h−∆, bt = wt − λxt − h−∆, (11)

where wt is the dealer’s value forecast, and xt is her inventory. The mid-quote price

pt = (at + bt)/2 satisfies

pt = wt − λxt −∆ = wt − λxt −
1− β + 2kα

k(1− β + kα)
m+

β

2(1− β + kα)
D. (12)

To get intuition for this result, suppose the imbalance parameter m and the dividend

D are both zero (hence ∆ = 0). Consider first the particular case when the dealer is

risk-neutral: γ = 0. In that case, both α and λ are equal to zero, and the dealer’s

inventory xt does not affect her strategy. Equation (11) implies that the dealer sets her

quotes at equal distance around her forecast wt. Hence, the ask quote at t is at = wt+h,

and the bid quote is bt = wt − h, where h is the constant half-spread. The equilibrium

value h = `/k corresponds to two opposite concerns for the dealer. If she sets too large

a half-spread, then investors (whose price sensitivity is increasing in k) submit a smaller

32For a general treatment of such problems, see Sargent and Ljungqvist (2000). See also HM2014
for an application to their price pressures model.
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expected quantity at the quotes.33 If she sets too small a half-spread, this decreases the

part of the profit that comes from the inelastic part ` of traders’ order flow.

When the dealer has inventory concerns (γ > 0), her inventory affects the optimal

quotes: according to equation (11), the quotes are equally spaced around an inventory-

adjusted forecast (wt − λxt). The effect of the dealer’s inventory on the mid-quote

price is in fact the price pressure mechanism identified by HM2014. To understand this

phenomenon, suppose that before trading at t the dealer has zero inventory, and at t

traders submit a net demand Q. The dealer’s inventory then becomes negative (−Q).

To avoid the inventory penalty, the dealer must bring back the inventory to zero. For

that, the dealer must raise the quotes to convince more sellers to arrive. Quantitatively,

according to (11) the dealer must increase both quotes by λQ, with the coefficient λ as

in equation (10). This makes the corresponding slope coefficient λ essentially a price

impact coefficient, in the spirit of Kyle (1985).34

According to (12), the mid-quote price is decreasing in the imbalance parameter m,

and increasing in the dividend D. To understand why, suppose the imbalance parameter

m is large, yet the dealer sets the mid-quote price equal to her forecast (that is, pt = wt).

The dealer then expects the sell demand to be much larger than the buy demand. Thus,

in order to avoid inventory buildup and to attract more buyers, she must lower her price

well below her forecast. A similar intuition works when the dividend D is large, but the

above argument reverses: because investors prefer getting a large dividend, to attract

more sellers the dealer must set a price higher than the forecast.

33For instance, equation (9) implies that the expected quantity traded at the ask is Et(Q
b
t) =

k
2 (wt − at) + `, which is decreasing in at.

34We stress that in our model price impact is caused by inventory considerations and not by adverse
selection between the dealer and the traders. Nevertheless, adverse selection occurs as long as the
dealer’s signal precision f is not infinite. The interested reader can separate the effect of inventory and
information by analyzing more carefully the dealer’s signal structure described in Appendix A.2. There
we see that the informativeness of trading depends on the noise parameter ΣN . The signal structure,
however, is chosen there to justify the reduced-form assumption in (5). Under that structure, the dealer
is only concerned about her forecast just before trading, and not on what effect trading has on this
forecast. But under a different signal structure this fact is no longer true, e.g., if we set Ṽη = Vη and

Ṽψ = Vψ (see the discussion before equation (A15)).
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4.3 Optimal Monitoring and the QT Ratio

We now discuss the dealer’s optimal monitoring rate q. Because the trading rate is

normalized to one, we identify the quote-to-trade ratio as the monitoring rate q:

q = Quote-to-Trade Ratio. (13)

Thus far, the description of the equilibrium does not depend on a particular spec-

ification for the precision function F (q) or the monitoring function C(q). To provide

explicit formulas, however, we now assume that both functions are linear: F (q) = fq

and C(q) = cq. In the proof of Proposition 2, we describe the equilibrium conditions

for more general F and C. Proposition 2 shows how to compute the dealer’s optimal

monitoring rate, which as we discussed above is the equilibrium QT ratio.

Proposition 2. The dealer’s optimal monitoring rate q satisfies

q2 =
k(kα + 1)

fc
=

kβ

fc

(γ − ω) +
√

(γ − ω)2 + 4γ
βk

−(γ + ω) +
√

(γ − ω)2 + 4γ
βk

. (14)

Using the formula in (14), we provide some comparative statics for q.

Corollary 1. The QT ratio q is increasing in investor elasticity k and inventory aver-

sion γ, and is decreasing in signal precision f and in monitoring cost c.

If the investor elasticity k is larger, investors are more sensitive to the quotes, and

the dealer increases her monitoring rate to prevent large fluctuations in inventory. If

the inventory aversion γ is larger, the dealer is relatively more concerned about her

inventory than about her profit. She then increases her monitoring rate to stay closer

to the fundamental value, such that her inventory does not fluctuate too much.

Empirically, the parameter γ is not directly observable. One possible proxy for γ

is the number of market makers that provide liquidity in the asset: arguably, a larger

number of intermediaries is correlated with a smaller γ for the representative dealer.

With this interpretation, a larger number of market makers should correspond to a

smaller dealer monitoring rate, hence to a smaller QT ratio. But this is exactly the first

part of the stylized empirical fact SF4 in Section 3.2.
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If the signal precision parameter f is smaller, the dealer gets noisier signals each time

she monitors, hence she must monitor the market more often in order to avoid getting

a large inventory. As a result, in neglected stocks where we expect dealer’s signals to

be noisier, the QT ratio q should be larger. This is counter-intuitive, since one could

think that the QT ratio is actually smaller in neglected stocks. This theoretical result

is, however, consistent with our stylized empirical fact SF1 that the QT ratio is larger

in neglected stocks (with low market capitalization, institutional ownership, analyst

coverage, trading volume, and volatility).

Similarly, if the monitoring cost parameter c is smaller, the dealer can afford to

monitor more often in order to maintain the same precision, which increases the QT

ratio. There is much evidence that the costs of monitoring have decreased dramatically

in recent times (see Hendershott et al., 2011). Accordingly, our stylized empirical fact

SF2 documents a sharp rise in the QT ratio, especially in the second part of our sample

(2003–2012).

4.4 Intermediation Irrelevance

In this section, we study the equilibrium evolution of the dealer’s inventory. As we see

in Proposition 1, the dealer’s inventory is an important state variable. Corollary 2 com-

putes its long-term mean and describes the equilibrium quotes by considering deviations

of the dealer’s inventory from its long-term mean.

Corollary 2. The dealer’s inventory is an AR(1) process:

xt+1 − x̄ =
1

1 + kα

(
xt − x̄

)
+ εt, x̄ =

1 + kα

kα

(1− β)m+ βkD/2

1− β + kα
. (15)

where εt is IID with mean zero and variance k2

fq
+ ΣN . The mid-quote price satisfies

pt = wt − λ
(
xt − x̄

)
− δ̄, δ̄ =

2m

k
. (16)

The mean inventory x̄ represents the dealer’s bias in holding the risky asset. In

HM2014 both m and D are zero, and therefore the mean inventory x̄ is also zero. In

our case both m and D are positive, hence x̄ is also positive. Intuitively, the case when
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m is positive corresponds to the case when investors are risk averse and the risky asset

is in positive net supply (see the micro-foundations in Appendix C). But the dealer

also behaves approximately as a risk averse investor because of the quadratic penalty

in inventory (see Footnote 30). Therefore, our model becomes essentially a risk sharing

problem, in which the dealer holds a positive inventory on average.35

If we write the mid-quote equation (16) at both t and t+ 1, we compute

pt+1 − pt = wt+1 − wt + ψ
(
xt − x̄

)
− λεt+1, ψ =

λkα

1 + kα
. (17)

We define the neutral state the situation in which the dealer’s inventory is at its long-

term mean (xt = x̄). In this state, equation (17) implies that the expected change in

price is zero, which in the language of HM2014 means that there is no price pressure.

We define the pricing discount as the difference between the dealer’s forecast and

the mid-quote price,

δt = wt − pt. (18)

From (16) it follows that the pricing discount in the neutral state is the same as its

long-term average, and is equal to δ̄ = 2m/k. Note that this value is independent on

the characteristics of the dealer, that is, on the inventory aversion γ, the signal precision

f , or the monitoring cost c. We have thus proved the main result of this section.

Corollary 3 (Intermediation Irrelevance). The average pricing discount is δ̄ = 2m/k,

and does not depend on dealer characteristics.

In particular, the average pricing discount does not depend on the dealer’s inventory

aversion γ. This is because in the neutral state there is no price pressure and the dealer

just needs to balance the order flow such that the inventory does not accumulate in

either direction. This result is surprising, because one may expect the discount to be

larger if the dealer has a larger inventory aversion γ. But while a larger coefficient γ

just increases the speed of convergence of the pricing discount to its mean, it does not

change the mean itself, which depends only on the properties of the order flow.36

35Even if m = 0, the dealer tends to hold inventory when the dividend D is positive. Indeed, in that
case the dealer must increase her quotes to attract sellers (see equation (12)), which tends to raise her
inventory and thus increase the dividend collected.

36According to (16), the equilibrium discount satisfies δt − δ̄ = λ(xt − x̄), and thus δt and xt are
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The average pricing discount δ̄ does depend on the properties of the order flow:

the imbalance parameter m and the investor elasticity k. If the imbalance parameter

m is larger, the dealer expects the difference between the sell and buy demands to be

larger. To compensate, the dealer must lower price to encourage demand, and therefore

increase the discount. If the investor elasticity k is larger, investors are more sensitive

to mispricing and therefore trade more intensely when the price is different from the

fundamental value. To prevent an expected accumulation of inventory, the dealer must

then set the price closer to her forecast, which implies a lower discount.

Empirically, it is difficult to find evidence for intermediation irrelevance, since pa-

rameters such as the inventory aversion γ are not easily observable. One proxy for γ

that was suggested above is the number of market makers that provide liquidity in the

asset (see the discussion after Corollary 1). The intuition is that a larger number of

intermediaries is correlated with a smaller γ for the representative dealer. In the next

section we see that the cost of capital (expected return) of a stock is in one-to-one

correspondence with the pricing discount. Therefore, according to our intermediation

irrelevance result the cost of capital of a stock should be unrelated to the number of

market makers active in that stock. But this is exactly the second part of the stylized

empirical fact SF4 in Section 3.2.

4.5 Cost of Capital

In this section, we define and analyze the cost of capital in the context of our model.

We consider the point of view of an econometrician that has access to the quote and

trade information, but not necessarily to the dealer’s inventory and forecast (in practice,

dealers’ inventories and forecasts are not public information). The expected return

(including dividends) at date t is then

rt =
Et(pt+1) +D − pt

pt
, (19)

both AR(1) processes with the same autoregressive coefficient: 1/(1 + kα). From (10), α is increasing
in γ, therefore the speed of mean reversion of both processes is also increasing in γ.
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where Et be the expectation operator conditional on the past information, pt is the

mid-quote price, and D is the dividend per share.

To simplify the presentation, we assume that the dealer’s inventory starts at its long-

term mean, that is, we set x0 = x̄. In this neutral state the price does not change in

expectation (see Section 4.4). We define the cost of capital to be the expected return

in the initial state.37 Denote the initial dealer forecast by w0 = w. Then, the cost of

capital is

r =
D

w − δ̄
=

D

w − 2m
k

. (20)

Note that the cost of capital is in one-to-one correspondence with the pricing discount

δ̄ = 2m/k. Thus, the intermediary irrelevance result (Corollary 3) applies equally to the

cost of capital, which should therefore not depend on dealer characteristics. The cost of

capital should depend on the characteristics of the order flow: the imbalance parameter

m and the investor elasticity k. The intuition for this dependence is the same as in the

discussion after Corollary 3.

The next result connects the cost of capital to the equilibrium QT ratio.

Corollary 4 (QT Effect). Holding all parameters constant except for the investor elas-

ticity k, there is an inverse relation between the cost of capital and the QT ratio.

Thus, the key driver of the QT effect in our model is investor elasticity. When k

is larger, Corollary 1 shows that the QT ratio is also larger: because traders are more

sensitive to the quotes, in order to prevent large fluctuations in inventory the dealer must

monitor more often. At the same time, when k is larger, the cost of capital is smaller:

because investors trade more intensely when the price differs from the fundamental

value, in order to prevent an expected accumulation of inventory the dealer must set

the price closer to her forecast, which implies a lower discount and hence a lower cost

of capital.

In Appendix C we provide micro-foundations for the order flow, and we show that

37We define the cost of capital only in the initial (neutral) state, because we want to avoid price
pressures that appear later in other states. Another reason is that in general it is difficult to analyze
risk premia in dynamic microstructure models. Indeed, if the expected return is constant, return com-
pounding implies that the price process grows exponentially on average, and to keep up the fundamental
value should also follow a geometric Brownian motion. But to maintain a tractable model we need the
fundamental value to follow an arithmetic Brownian motion.

29



the investor elasticity k is larger when traders are less risk averse. Therefore, trader risk

aversion drives the QT effect: less risk averse traders cause both a larger QT ratio and

a smaller cost of capital.

The QT effect is documented empirically in the cross-section of stock returns by

the stylized empirical fact SF3 in Section 3.2. The inverse relation between the cost of

capital and the QT ratio hold empirically in both parts of our sample: 1994–2002 and

2003–2012. This is the stylized empirical fact SF3′ in Section 3.3.

5 Conclusion

This paper studies the quote-to-trade (QT) ratio and its relation with liquidity, price

discovery, and expected returns. Empirically, we find that the QT ratio is larger in

stocks that are small, illiquid or neglected. Our main finding (the QT effect) is that

stocks with higher QT ratio tend to have lower average returns. Despite the fact that

the QT ratio has increased significantly over time, especially in the second part of our

sample (2003–2012), the QT effect is almost equally strong in both parts of the sample.

Overall, our results are driven by quotes, not by trades.

In the theoretical part of our paper, we propose a model of the QT ratio that is

consistent with our empirical findings. In equilibrium, market makers receive less precise

signals in neglected stocks, and therefore monitor the market faster in those stocks, thus

increasing their QT ratio. A QT effect arises in our model: market makers also monitor

faster when investors have a higher elasticity (or, more fundamentally, when investors are

less risk averse), which increases the QT ratio, but at the same time reduces mispricing

and lowers expected returns. If we interpret the representative dealer’s risk tolerance

(inverse risk aversion) as a proxy for the number of market makers, then our model

provides two additional empirical predictions: a larger number of market makers lowers

the QT ratio, but has no effect on expected return. We find that indeed these results

hold in the data.

Our results help understand the determinants of the QT ratio, and which deter-

minants are related to liquidity and the cost of capital. Many proposals to regulate

automated trading in financial markets are based on the QT ratio, under the supposi-
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tion that this variable reflects unnecessary or even destabilizing high-frequency trading

activity. Our results, however, suggest that HFT activity may have little effect on im-

portant variables such as the cost of capital. Indeed, our theoretical results suggest that

in general the QT ratio is determined by the activity of various market participants, such

as market makers and investors, and we find empirical evidence for this connection even

before the proliferation of HFT in the late 2000s. At the same time, our intermediation

irrelevance result implies that the cost of capital is affected only by the characteristics

of investors (such as risk aversion) and not by the characteristics of intermediaries such

as market makers. Thus, we obtain a useful negative theoretical result: a certain regu-

lation may affect the QT ratio, but as long as it does not affect the investors’ liquidity

demand, the cost of capital should not change.
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Table 1: Characteristics of quote-to-trade ratio portfolios

The table presents the monthly average characteristics for 10 quote-to-trade ratio (QT) portfolios

constructed in month t. Portfolio 1 consists of stocks with the lowest QT and portfolio 10 consists

of stocks with the highest QT in month t. Each portfolio contains on average 309 stocks. Stocks

priced below $2 or above $1000 at the end of month t are removed. The sample period is June 1994

to October 2012. For each QT decile, we compute the cross-sectional mean characteristic for month

t + 1. The reported characteristics are computed as the time-series mean of the mean cross-sectional

characteristic. Column (2) is the QT level, columns (3) and (4) are the number of trades and quote

updates in thousands, column (5) shows market capitalization (in million USD), columns (6) and (7)

show the share volume (in million shares) and USD volume traded (in million USD), columns (8)

and (9) show the quoted spread and relative spread (in % of the mid-quote), column (10) shows the

Amihud illiquidity ratio (ILR) in %, column (11) shows volatility (calculated as the absolute monthly

return in %), column (12) shows price, column (13) shows the average Book-to-Market value measured

at the end of the previous calendar year, and column (14) shows the average monthly portfolio return

in excess of the risk free rate (rt+1) for each portfolio. Individual stock returns are mid-quote returns

corrected for delisting bias in CRSP by adding a -30% return for delisting codes 500 and 520-584.

Average portfolio characteristics at t+ 1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

QT N(trades) N(quotes) MCAP VOLUME (mill.) SPREAD
portf (t) QT (x 1000) (x 1000) (mill.) Shares USD Quoted Relative (%) ILR (%) VOLA (%) PRC BM rp,t+1 (%)

1 1.4 131 187 8912 75.1 1725 0.140 1.41 2.75 3.71 15.7 0.63 1.52
2 2.8 47 215 3629 20.0 692 0.160 1.61 3.75 3.58 18.0 0.63 1.30
3 3.9 33 224 2863 13.5 533 0.178 1.71 3.96 3.34 20.3 0.64 1.10
4 5.2 26 229 2497 10.5 444 0.201 1.82 4.41 3.22 22.2 0.64 1.04
5 6.7 20 216 2091 8.1 352 0.233 1.98 5.25 3.13 23.7 0.65 0.95
6 9.0 15 201 2315 7.2 321 0.275 2.14 6.79 2.84 24.6 0.70 0.81
7 13.9 11 166 3302 7.7 335 0.259 1.98 5.69 2.32 24.9 0.76 0.94
8 20.8 7 131 2034 4.7 207 0.278 1.86 4.55 1.98 25.7 0.76 0.84
9 43.6 3 97 1431 2.8 126 0.323 1.95 5.13 1.89 25.9 0.78 0.84
10 154.4 1 85 828 1.2 58 0.441 2.38 7.91 1.73 27.9 1.01 0.65
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Table 2: Determinants of the quote-to-trade ratio

The table shows the two-way fixed effects panel regression on the determinants of the quote-to-trade

ratio (QT). The dependent variable is the monthly QT. The independent variables are: annual num-

ber of analysts covering a stock (AN .COVER.), dummy equal to one when a company has no ana-

lyst coverage and zero otherwise (NO ANALYST ), quarterly institutional ownership (INST .OWN .),

log-book-to-market as of the previous year end (BM ); previous month return (rt−1); as well as con-

temporaneous (monthly) variables: log-market capitalization (MCAP), log-price (PRC ), share trading

volume (VOLUME ), Amihud illiquidity ratio (ILR), bid-ask spread (SPREAD), volatility (VOLA),

and number of NASDAQ market makers (MM ). Standard errors are double-clustered at the stock and

month level.

(1) (2) (3)

AN .COVER. -0.87∗∗∗ -0.62∗∗∗ -0.72∗∗∗

(-6.83) (-5.80) (-5.74)
NO ANALYST 20.54∗∗∗ -16.69∗∗∗ -11.51∗∗∗

(3.92) (-4.51) (-3.01)
INST .OWN . -22.91∗∗∗ -47.94∗∗∗ -59.65∗∗∗

(-4.77) (-6.46) (-9.25)
BM 16.52∗∗∗ -3.68 -5.27

(3.46) (-1.41) (-1.55)
MCAP -1.66 -2.78∗ -4.42∗∗

(-1.32) (-1.71) (-2.04)
R1 -14.19∗∗∗ 0.18 -0.03

(-3.64) (0.10) (-0.01)
PRC 0.56∗∗∗ 0.36∗∗∗ 0.55∗∗∗

(5.98) (3.91) (3.12)
VOLUME 1.60e-08∗∗ -4.30e-08∗∗∗ -4.99e-08∗∗∗

(2.21) (-6.81) (-6.85)
ILR 3.49 -3.52 -2.86

(1.21) (-1.44) (-0.89)
SPREAD -8.79∗∗∗ 0.63 -2.67

(-4.16) (0.21) (-0.49)
VOLA -57.01∗∗∗ -19.75∗∗∗ -15.53∗∗∗

(-5.24) (-4.28) (-3.37)
MM -0.46∗∗∗

(-3.78)

Stock FE NO YES YES
Time FE NO YES YES

N 672,952 672,888 453,736
Adj. R2 0.03 0.19 0.20
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Table 3: Risk-adjusted returns for quote-to-trade ratio portfolios

The table shows risk-adjusted monthly returns for various portfolios sorted on the quote-to-trade ratio

(QT). The α’s reported in the table are time series averages of intercepts (risk-adjusted returns) obtained

from 24-month rolling window regressions. The monthly returns of the QT portfolios are risk-adjusted

using several asset pricing models: CAPM, Fama and French (1993) model (FF3), a model that adds

the Pástor and Stambaugh (2003) traded liquidity factor (FF3+PS), a five factor model that adds

a momentum factor (FF4+PS), and a model that adds the PIN factor for the period June 1994 to

December 2002 (FF4+PS+PIN). We show the alpha for the lowest and highest QT portfolios and the

alpha for the difference in returns between the low and high portfolios. In Panel A, stocks are assigned

to ten portfolios based on their QT level in month t. Then returns are calculated for each portfolio

for month t+ 1. Panels B and C show stocks assigned to 25 and 50 portfolios. ∗∗∗, ∗∗, and ∗ indicate

rejection of the null hypothesis that the risk-adjusted portfolio returns are significantly different from

zero at the 1%, 5%, and 10% level, respectively.

Risk-adjusted returns (%)

CAPM FF3 FF3+PS FF4+PS FF4+PS+PIN

Panel A: 10 QT portfolios

α1 0.92∗ 1.05∗∗∗ 1.03∗∗∗ 1.67∗∗∗ 1.69∗∗∗

α10 0.37 -0.08 -0.09 0.09 0.08
α1−10 0.55 1.14∗∗∗ 1.11∗∗∗ 1.58∗∗∗ 1.61∗∗∗

Panel B: 25 QT portfolios

α1 0.89 1.10∗∗ 1.10∗∗ 1.88∗∗∗ 1.91∗∗∗

α25 0.22 -0.22 -0.21 -0.03 -0.04
α1−25 0.67 1.31∗∗∗ 1.31∗∗ 1.91∗∗∗ 1.95∗∗∗

Panel C: 50 QT portfolios

α1 0.60 0.82∗ 0.81∗ 1.56∗∗∗ 1.57∗∗∗

α50 0.08 -0.33 -0.34 -0.18 -0.19
α1−50 0.52 1.15∗∗ 1.15∗∗ 1.74∗∗∗ 1.76∗∗∗
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Table 4: Stock risk-adjusted returns and quote-to-trade ratio

The table reports the Fama and MacBeth (1973) coefficients from regressions of risk-adjusted monthly

returns on firm characteristics. The dependent variable is the risk-adjusted return rai,t = ri,t −∑J
j=1 βi,j,t−1Fj,t, where the risk factors Fj,t come from the FF4+PS model (market, size, value, mo-

mentum and the Pástor and Stambaugh (2003) traded liquidity factor). The firm characteristics are

measured in month t− 1. The characteristics included are: quote-to-trade ratio (QT ), relative bid/ask

spread (SPREAD), Amihud illiquidity ratio (ILR), log-market capitalization (MCAP), log-book-to-

market ratio (BM ) calculated as the natural logarithm of the book value of equity divided by the

market value of equity from the previous fiscal year, previous month return (R1), cumulative return

from month t−2 to t−12 (R212), idiosyncratic volatility (IDIOVOL) measured as the standard devia-

tion of the residuals from a FF3 regression of daily raw returns within each month as in Ang, Hodrick,

Xing, and Zhang (2009), log-dollar-volume (USDVOL), log-price (PRC ), and number of NASDAQ

market makers (MM ). All coefficients are multiplied by 100. The standard errors are corrected by

using the Newey-West method with 12 lags. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10%

level, respectively.

(1) (2) (3) (4) (5) (6)

Const. 0.006∗∗∗ 0.004∗∗∗ 0.013∗∗∗ 0.011∗∗∗ 0.036∗∗∗ 0.041∗∗∗

QT i,t−1 -0.222∗∗∗ -0.244∗∗∗ -0.286∗∗∗ -0.297∗∗∗ -0.119∗∗∗ -0.088∗

SPREAD i,t−1 0.141∗∗∗ 0.067∗∗ 0.035 0.041
ILRi,t−1 0.097∗∗∗ 0.075∗∗∗ -0.004 0.035
MCAP i,t−1 -0.224∗∗∗ -0.321∗∗∗

BM i,t−1 0.073 0.074
R1i,t−1 -4.413∗∗∗ -4.651∗∗∗

R212i,t−1 0.061 0.086
IDIOVOLi,t−1 -12.544∗∗∗ -16.133∗∗∗

USDVOLi,t−1 0.163∗∗∗ 0.279∗∗∗

PRC i,t−1 -0.433∗∗∗ -0.556∗∗∗

MM i,t−1 0.000

R2 0.00 0.01 0.01 0.01 0.04 0.04
Time series (months) 216 216 216 216 216 216
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Table 5: Quotes versus Trades

The table reports the Fama and MacBeth (1973) coefficients from regressions of risk-adjusted monthly

returns on firm characteristics including the number of quotes and trades. The dependent variable is

the risk-adjusted return rai,t = ri,t−
∑J
j=1 βi,j,t−1Fj,t, where the risk factors Fj,t come from the FF4+PS

model (market, size, value, momentum and the Pástor and Stambaugh (2003) traded liquidity factor).

The firm characteristics are measured in month t−1. The characteristics included are: number of quotes

(QUOTE ), number of trades (TRADE ), relative bid/ask spread (SPREAD), Amihud illiquidity ratio

(ILR), log-market capitalization (MCAP), log-book-to-market ratio (BM ) calculated as the natural

logarithm of the book value of equity divided by the market value of equity from the previous fiscal

year, previous month return (R1), cumulative return from month t− 2 to t− 12 (R212), idiosyncratic

volatility (IDIOVOL) measured as the standard deviation of the residuals from a FF3 regression of

daily raw returns within each month as in Ang et al. (2009), log-dollar-volume (USDVOL), and log-

price (PRC ). All coefficients are multiplied by 100. The standard errors are corrected by using the

Newey-West method with 12 lags. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% level,

respectively.

(1) (2) (3) (4) (5) (6)

Const. 0.018∗∗∗ 0.016∗∗∗ 0.015∗∗∗ 0.014∗∗∗ 0.025∗∗∗ 0.025∗∗∗

QUOTE i,t−1 -0.326∗∗∗ -0.342∗∗∗ -0.285∗∗∗ -0.307∗∗∗ -0.097∗∗ -0.118∗∗

TRADE i,t−1 0.206∗ 0.245∗∗ 0.286∗∗ 0.298∗∗ -0.121 -0.104
SPREAD i,t−1 0.052 0.035 0.010
ILRi,t−1 0.107∗∗ 0.087∗∗ 0.001
MCAP i,t−1 -0.245∗∗∗ -0.228∗∗∗

BM i,t−1 0.060 0.065
R1i,t−1 -4.562∗∗∗ -4.464∗∗∗

R212i,t−1 0.050 0.057
IDIOVOLi,t−1 -9.315∗∗∗ -11.320∗∗∗

USDVOLi,t−1 0.376∗∗∗ 0.057∗∗∗

PRC i,t−1 -0.604∗∗∗ -11.320∗∗∗

R2 0.01 0.01 0.01 0.01 0.04 0.04
Time series (months) 216 216 216 216 216 216
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Figure 1: Time series evolution in the quote-to-trade ratio

The graphs show the time series of the natural logarithm of the quote-to-trade ratio QTi,t =
N(quotes)i,t
N(trades)i,t

.

Panel A shows the monthly time series of the cross-sectional mean, median, 25th, and 75th percentile of

the QT variable. Panel B shows the monthly average number of quote updates and number of trades.

(a) Quote-to-Trade Ratio

(b) Quotes and Trades
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Figure 2: Portfolio alphas for different holding horizons and formation periods

The figure shows the long-short alpha for the difference between risk-adjusted returns for low-quote-to-

trade ratio (QT1) and high-quote-to-trade ratio (QT25) portfolios for 25 QT-sorted portfolios across

different holding and formation periods. The alphas are estimated using the FF4+PS model (market,

size, value, momentum and the Pástor and Stambaugh (2003) traded liquidity factor). Stocks are

assigned into portfolios based on their quote-to-trade ratio level over the past 1, 3, 6, and 12 months

(formation period), and holding horizons range from 1 to 12 months.
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Appendix A. Monitoring

The purpose of this section is to provide micro-foundations for the dealer’s precision
function in (5). If wt is the dealer’s forecast of vt before trading at t, equation (5)
implies that her forecast precision 1/Var(vt − wt) is independent of the trading time t,
and has a linear expression, F (q) = fq, in the monitoring rate q. In this section, we
show that this specification arises from an actual set of signals observed by the dealer.

Recall that in our model in Section 4.1, trading takes place at integer times t =
0, 1, 2, . . ., while monitoring takes place at fractional times 0

q
, 1
q
, 2
q
, . . ., where q is the

monitoring rate. In this Appendix, we consider the monitoring rate q to be a positive
integer, while in the rest of the paper we use the results derived here in reduced form,
and consider q to be any positive real number.

To simplify notation, we index monitoring times by τ = 0, 1, 2, . . . rather than by
the corresponding fractional times. With this notation, trading takes place at τ =
0, q, 2q, . . ., which are integer multiples of the monitoring rate; by convention, we assume
that on these dates monitoring occurs before trading. Equations (9) imply that traders’
order flow satisfies

Qb
τ =

k

2
(vτ − aτ ) + `−m+ εbτ , with εbτ

IID∼ N (0,ΣN/2) ,

Qs
τ =

k

2
(bτ − vτ ) + `+m+ εsτ , with εsτ

IID∼ N (0,ΣN/2) ,

(A1)

A.1. Uninformative Trading

We first analyze the simpler case when the trading process is uninformative to the dealer.
Formally, this occurs when the trading noise measured by ΣN is sufficiently large (see
equation (A17) below). In this case, we ignore the trading process altogether and focus
instead on the monitoring process. Denote by Iτ the dealer’s information set after
monitoring at τ , and by wτ = E(vτ |Iτ ) the dealer’s forecast at τ .

We now show that any positive function F (q), not necessarily linear, can arise as the
dealer’s precision function for a certain set of signals. Define

G = G(q) =
1

F (q)
. (A2)

Fix q > 0, and define Vη = Vη(q) > 0 as follows: if F (q) ≤ q/Σv, choose any Vη > 0; and
if F (q) > q/Σv, choose any Vη ∈

(
0, 1

F (q)−q/Σv

)
. Also, define Vv = Vv(q) and Vψ = Vψ(q)

by

Vv =
Σv

q
, Vψ = G2 Vη + Vv

VηVv
−G. (A3)

Clearly, Vv > 0. We show that Vψ > 0 as well. Indeed, from the definition of Vη, we see
that

(
F (q) − q/Σv

)
Vη < 1 for all q > 0. Using the notation above, this is the same as(

1
G
− 1

Vv

)
Vη < 1, which is equivalent to 1

G
< 1

Vv
+ 1

Vη
. Thus, GVη+Vv

VηVv
> 1 or equivalently
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Vψ = G
(
GVη+Vv

VηVv
− 1
)
> 0. Note that equation (A3) implies

G2

G+ Vψ
=

VvVη
Vv + Vη

. (A4)

We define the signal observed by the dealer at τ = 0. Since we can choose freely
the initial variance Var(v0) = Σv0 , consider Σv0 > G, and suppose that at τ = 0 the

dealer observes s0 = v0 + ν, with ν ∼ N
(
0,

GΣv0
Σv0−G

)
. Then, the dealer’s forecast is

w0 = E(v0|s0) = β0s0, where β0 = G/Σv0 . A direct computation shows that indeed
Var(v0 − w0) = G. Thus, if we define

Gτ = Var(vτ − wτ ), τ ≥ 0, (A5)

we have G0 = G.
At each τ = 1, 2, . . ., the dealer observes two signals:{

rτ = (vτ−1 − wτ−1) + ψτ , with ψτ
IID∼ N (0, Vψ), and

sτ = (vτ − vτ−1) + ητ with ητ
IID∼ N (0, Vη).

(A6)

Since the forecast is wτ = E(vτ |rτ , sτ , rτ−1, sτ−1, . . .), its increment is ∆wτ = wτ−wτ−1 =
E(vτ − wτ−1|rτ , sτ ) = E(vτ − vτ−1|sτ ) + E(vτ−1 − wτ−1|rτ ). Then,

∆wτ =
Vv

Vv + Vη
sτ +

Gτ−1

Gτ−1 + Vψ
rτ . (A7)

We compute vτ −wτ = vτ−1−wτ−1 +∆vτ −∆wτ =
Vψ

Gτ−1+Vψ
(vτ−1−wτ−1)− Gτ−1

Gτ−1+Vψ
ψτ +

Vη
Vv+Vη

∆vτ − Vv
Vv+Vη

ητ . Taking variance on both sides, we obtain the recursive equation

Gτ =
Gτ−1Vψ
Gτ−1 + Vψ

+
VvVη
Vv + Vη

. (A8)

From (A4), we substitute VvVη
Vv+Vη

by G2

G+Vψ
, and the recursive equation (A8) becomes

Gτ −Gτ−1 =

(
1−

V 2
ψ

(G+ Vψ)(Gτ−1 + Vψ)

)
(G−Gτ−1). (A9)

Because G0 = G, equation (A9) implies that Gτ is constant and equal to G for all τ .38

Since G = 1
F (q)

, this finishes the proof.

For future reference, we use equation (A7) to compute Var(∆wτ ) = V 2
v

Vv+Vη
+ G2

G+Vψ
.

Equation (A4) then implies that Var(∆wτ ) = V 2
v

Vv+Vη
+ VvVη

Vv+Vη
= Vv. Thus, we have proved

that

Var(∆wτ ) = Var(∆vτ ) = Vv =
Σv

q
. (A10)

38Note that the coefficient in front of G−Gτ−1 in equation (A9) is a number in the interval (0, 1).
It is then straightforward to show that Gτ converges monotonically to the constant G regardless of the
initial value G0.
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A.2. Informative Trading

We now analyze the general case when the trading process is informative, meaning that
the noise parameter ΣN can be any positive real number. Thus, beside the monitoring
times, we also need to analyze the dealer’s inference at the trading times τ = 0, q, 2q, . . .,
where q is the monitoring rate and is a positive integer. (Recall that on the these dates
monitoring occurs before trading.)

We now show that any linear function F (q) = fq that satisfies a mild condition (see
equation (A14) below) can arise as the dealer’s precision function for a set of signals.
As before, given F (q) we define G = G(q) = 1

F (q)
= 1

fq
. Denote by Iτ the dealer’s

information set after monitoring at τ , by wτ = E(vτ |Iτ ) the dealer’s forecast at τ , and
by eτ = vτ − wτ her forecast error. Then, equations (A1) become

Qb
τ =

k

2
eτ − (aτ − wτ ) + `+ εbτ , with εbτ

IID∼ N (0,ΣN/2) ,

Qs
τ = −k

2
eτ − (wτ − bτ ) + `+ εsτ , with εsτ

IID∼ N (0,ΣN/2) ,

(A11)

At trading time t = 0, q, 2q, . . ., define also

wτ+ = E(vτ | Iτ , Qb
τ , Q

s
τ ), Gτ+ = Var(vτ − wτ+). (A12)

As in the informative case, we look for a stationary equilibrium, which here means
that we want the dealer to have a periodic signal precision with periodicity equal to the
monitoring rate q. Thus, the signal precision follows a periodic sequence of the form

G0 , G0+ , G1 , · · · , Gq = G0 , Gq+ , Gq+1 , · · · (A13)

We show that there is a simple solution for which Gτ are equal to G = 1
fq

, as long as
the following condition is satisfied:

f >
1

Σv

or
ΣNf

2

k2
>

1

Σv

− f. (A14)

To understand intuitively the role played by this condition, suppose (A14) fails to hold.
This means that the noise component of trading, measured by ΣN , is small. Then, the
increase in precision (1/G0−1/G0+) that comes from the information content of trading
is also small. By contrast, the decrease in precision (1/G0+−1/G1) that comes from the
diffusion in fundamental value during the interval [0, 1] is large, and thus the equation
G0 = G1 cannot hold when (A14) fails. Note that the condition (A14) also translates
into the requirement that the dealer’s monitoring precision f is sufficiently high.

Suppose now condition (A14) is satisfied. We then assume that the dealer receives
the same signals rτ and sτ as in the uninformative case, except for the monitoring times
that come just after trading: τ = 1, q + 1, 2q + 1, . . .. At those times, we modify the
variance of rτ and sτ , by defining new values for Vψ and Vη. To see how this is done,
consider the following cases:

� If f > 1/Σv, we multiply by q to obtain fq = F = 1/G > 1/Vv, where Vv = Σv/q.
In this case, we choose 1

Ṽη
in the positive interval

(
1
G
− 1

Vv
, ΣN
k2G2 + 1

G
− 1

Vv

)
.
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� If f ≤ 1/Σv, we have 1/G ≤ 1/Vv. Because q is a positive integer, condition (A14)

implies ΣNf
2

k2
q2 >

(
1

Σv
− f

)
q, which is equivalent to ΣN

k2G2 >
1
Vv
− 1

G
. In this case,

we choose 1
Ṽη

in the interval
(
0, ΣN

k2G2 + 1
G
− 1

Vv

)
. Since 1/G− 1/Vv ≤ 0, it follows

that 1
Ṽη

also belongs to the larger interval
(

1
G
− 1

Vv
, ΣN
k2G2 + 1

G
− 1

Vv

)
.

Thus, in both cases 1
Ṽη

lies in the interval
(

1
G
− 1

Vv
, ΣN
k2G2 + 1

G
− 1

Vv

)
, or equivalently

1
Ṽη

+ 1
Vv
− 1

G
lies in the interval

(
0, ΣN

k2G2

)
. Now define

Ṽψ =
ΣN

k2

(
ΣN
k2G2 + 1

G
− 1

Vv

)
− 1

Ṽη

Ṽη −
(

1
G
− 1

Vv

) . (A15)

From the above discussion, it follows that both Ṽη and Ṽψ are positive, and hence when
τ = 1, q + 1, 2q + 1, . . ., the modified signals rτ and sτ are well defined.

We show Gτ = G for all τ ≥ 0. Because the only difference between the informative
and the uninformative case occurs at τ = 1, q + 1, 2q + 1, . . ., without loss of generality
we only need to prove that G1 = G. Since trading at τ = 0 is informative for the
dealer, her forecast after trading is w0+ = E(v0|I0, Q

b
0, Q

s
0) = w0 + E(e0|Qb

0, Q
s
0), where

e0 = v0 − w0 and

E(e0|Qb
0, Q

s
0) =

kG

k2G+ ΣN

(
Qb

0 −Qs
0

)
, Var(e0|Qb

0, Q
s
0) =

GΣN

k2G+ ΣN

. (A16)

We apply the recursive formula (A8) for τ = 1, by replacing (i) Vη with Ṽη, (ii) Vψ with
Ṽψ, and (iii) G0 with G0+ = GΣN

k2G+ΣN
. Then, a direct computation shows that G1 = G.

Since all Gτ are equal to G, it follows that F (q) = fq.
We can now determine when trading is uninformative for the dealer. From the above

analysis, this translates into the update w0+ − w0 being much smaller than a generic
increment wτ −wτ−1 (for τ not of the form 1, q+ 1, 2q+ 1, . . .). This translates into the
condition that the variance ΣN is sufficiently large:39

ΣN �
k2

f 2Σv

. (A17)

Appendix B. Proofs of Results

Proof of Proposition 1. Fix the monitoring rate q > 0. Let It be the dealer’s infor-
mation set just before trading at t, and by Et the expectation operator conditional on
It. Let wt = Et(vt) be the dealer’s forecast of the fundamental value, and G the variance
of the forecast error. From (5), we have

G = Var(vt − wt) =
1

fq
. (B1)

39Using equations (A10) and (A16), the condition Var(w0+
−w0)� Var(∆wτ ) becomes k2G2

k2G+ΣN
�

Σv

q , which translates to ΣN

k2G2 � q
Σv

, or since G = 1
fq , to ΣN � k2Σv

qf2Σv
. But the monitoring rate q is a

positive integer, hence the condition is equivalent to ΣN � k2

f2Σv
.
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We now compute the dealer’s expected utility coming from a quoting strategy (at, bt).
If we define

ht =
at − bt

2
, δt = wt −

at + bt
2

, et = vt − wt, (B2)

then the quoting strategy is equivalent to choosing (ht, δt). Equation (9) implies that
traders’ buy and sell demands at t are given, respectively, by Qb

t = k
2
(vt−at)+`−m+εbt

and Qs
t = k

2
(bt−vt)+`+m+εst , with εbt , ε

s
t ∼ N (0,ΣN/2). Let εt = −ket+εst −εbt . This

is uncorrelated with the past information and has a normal distribution N (0, k2G+ΣN).
If xt is the dealer’s inventory before trading at t, equation (7) shows that xt describes
the recursive equation xt+1 = xt −Qb

t +Qs
t , which translates into

xt+1 = xt − kδt + 2m+ εt with εt
IID∼ N

(
0, k2G+ ΣN

)
. (B3)

Substituting Qb
t and Qs

t in the dealer’s objective function from (8), and ignoring the

monitoring costs C(q), we get Eτ
∑∞

t=τ β
t−τ Et

(
Dxt − k

2
(at − vt)

2 − k
2
(vt − bt)

2 + (` −

m)(at−vt)+(`+m)(vt−bt)−γx2
t

)
. We decompose Et(vt−bt)2 = Et(vt−wt+wt−bt)2 =

G+ (wt − bt)2, and similarly Et(at − vt)2 = G+ (at − wt)2. Using the notation in (B2),
it follows that the dealer’s maximization problem at τ is

max
(ht,δt)t≥τ

Eτ

∞∑
t=τ

βt−τ
(
Dxt − kG− kδ2

t − kh2
t + 2`ht + 2mδt − γx2

t

)
, (B4)

where xt evolves according to (B3). Using the Bellman principle of optimization, we
reduce the dynamic optimization in (B4) to the following static optimization problem:

V (xt) = max
ht,δt

(
2dxt − kG− kδ2

t − kh2
t + 2`ht + 2mδt − γx2

t + β Et V (xt+1)
)
, (B5)

where d = D
2

. We guess that V (x) is a quadratic function of the form

V (x) = W0 − 2W1x−W2x
2 (B6)

for some constants W0,W1,W2. Substituting xt+1 from (B3), the problem becomes

V (xt) = max
ht,δt

(
2dxt − kG− kδ2

t − kh2
t + 2`ht + 2mδt − γx2

t

+ βW0 − 2βW1(xt − kδt + 2m)− βW2(xt − kδt + 2m)2 − βW2(k2G+ ΣN)
)
.

(B7)

The first order condition in (B7) with respect to ht implies ht = `
k
, which shows that

the optimal ht = h, the constant defined in (10). The first order condition in (B7) with
respect to δt implies δt = βW2

1+kβW2
xt + m+kβW1+2kmβW2

k(1+kβW2)
, which shows that the optimal

δt = λxt + ∆, where

λ =
α

1 + kα
, ∆ =

m+ kα1 + 2kmα

k(1 + kα)
, α1 = βW1, α = βW2. (B8)
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Because V (xt) = W0 − 2W1xt −W2x
2
t , we solve for W0,W1,W2:

W0 =
1

1− β

(`2

k
− k(1 + kα)G− αΣN +

(1 + kα)
(
(1− β)m+ βkd

)2

k(1− β + kα)2

)
,

W1 =
α

1− β + kα
m− 1 + kα

1− β + kα
d, W2 =

βW2

1 + kβW2

+ γ.

(B9)

For a maximum, we need to have W2 > 0. The quadratic equation for W2 in (B9) has
a unique positive solution,

W2 =
γ − ω +

√
(γ − ω)2 + 4 γ

βk

2
, with ω =

1− β
βk

. (B10)

This implies that α = βW2 indeed satisfies (10).
If the dealer has an inventory of xt = x, from equation (B6) it follows that the

maximum expected utility she can achieve at t is V (x) = W0−2W1x−W2x
2 = 1

1−β

(
`2

k
−

αΣN − k(1 + kα)G+ (1+kα)((1−β)m+βkd)2

k(1−β+kα)2

)
− 2W1x−W2x

2. Since G = 1
fq

, we get

U(q) =
1

1− β

(
W̃0 −

k(1 + kα)

fq

)
− 2W1x−W2x

2, (B11)

where W̃0, W1 and W2 do not depend on q. Also, using α1 = βW1, we compute
∆ = 1−β+2kα

k(1−β+kα)
m− β

1−β+kα
d. Since d = D

2
, this proves that the formula for ∆ in (10).

Proof of Proposition 2. Consider a more general function F (q) = 1/Var(vt − wt)
that is increasing in the monitoring rate q. If G(q) = 1/F (q), we have showed in
the proof of Proposition 1 that the dealer’s maximum expected utility is of the form
V (xt) = W0 − 2W1xt − W2x

2
t , where W0, W1 and W2 are as in (B9). This formula,

however, does not include the monitoring costs per unit of time, C(q). If we include

these costs, the dealer’s maximum utility is W0 − 2W1xt −W2x
2
t −

C(q)
1−β . But up to a

constant that does not depend on q, this utility is equal to −k(1+kα)G(q)−C(q)
1−β . The first

order condition with respect to q is equivalent to −k(1 + kα)G′(q) − C ′(q) = 0. Thus,
the optimal monitoring rate satisfies

−C
′(q)

G′(q)
=

C ′(q)F 2(q)

F ′(q)
= k(kα + 1). (B12)

The second order condition for a maximum is k(kα + 1)G′′(q) + C ′′(q) > 0, which is
satisfied if the functions G and C are convex, with at least one of them strictly convex.

We now use the linear specification C(q) = cq and F (q) = fq, and compute the
optimal monitoring rate q. Since G(q) = 1

fq
, from (B12) it follows that q satisfies

fcq2 = k(kα + 1), which proves the first part of equation (14). Because the function G
is strictly convex, note that the second order condition is satisfied.

The second part of (14) follows by using the expression for α in (10).

Proof of Corollary 1. We first prove that α is decreasing in k and increasing in γ.
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Equation (B9) implies that α = βW2 satisfies the equation α
β
−γ = α

1+kα
. Differentiating

this equation with respect to k, we get ∂α
∂k

= − βα2

(1+kα)2−β < 0. Similarly, differentiation

with respect to γ implies ∂α
∂γ

= β(1+kα)2

(1+kα)2−β > 0.

Equation (14) implies that q and the term Q = k(1 + kα) have the same de-
pendence on the parameters k and γ. Using the formula above for ∂α

∂k
, we compute

∂Q
∂k

= (1+kα)2(1−β+2kα)
(1+kα)2−β > 0. Finally, Q is increasing in α, which (as proved above) is

increasing in γ, hence Q is also increasing in γ.
By visual inspection of equation (14), it is clear that the quote-to-trade ratio q is

decreasing in f and increasing in σv.

Proof of Corollary 2. Using equation (B3) and the fact that in equilibrium δt =
λxt + ∆, it follows that the dealer’s inventory evolves according to xt+1 = (1− kλ)xt −
k∆ + 2m + εt, with εt ∼ N (0, k2G + ΣN) and G = 1

F
= 1

fq
. From (10), the coefficient

φ = 1 − kλ = 1
1+kα

∈ (0, 1), hence xt+1 = 1
1+kα

xt − k∆ + 2m + εt. Thus, xt follows
an AR(1) process with auto-regressive coefficient φ, mean x̄ = (2m− k∆)/(1− φ), and
variance Σx =

(
k2

fq
+ ΣN

)
/(1−φ2). Using the formula for ∆ in (10), it is straightforwad

to prove the formula for x̄ in (15). One can also show that Σx = kα(2+kα)
(1+kα)2

(
k2

fq
+ ΣN

)
.

Proof of Corollary 3. This has already been proved in the discussion that precedes
the statement of the Corollary. Alternatively, Proposition 1 implies that the pricing
discount at t is equal to wt − pt = λxt + ∆, whose average equals λx̄ + ∆. Using (10),
we compute the average discount to be 2m/k, which is the same as δ̄.

Proof of Corollary 4. First, we prove rigorously equation 20. Since the system is
initially in the neutral state (x0 = x̄), according to (17) the expected price change
E0 p1 − p0 is zero. But, if w is the initial forecast, by definition w − p0 is the pricing
discount. Since in the neutral state the pricing discount is δ̄ = 2m/k, it follows that
p0 = w− δ̄, which proves (20). Suppose now we hold all parameters constant except for
k. Clearly, the cost of capital is decreasing in k, as the pricing discount δ̄ is decreasing
in k. At the same time, Corollary 1 implies that the QT ratio q is increasing in k. This
proves the inverse relation between r and q.

Appendix C. Micro-Foundations of Order Flow

In this section we provide assumptions under which the traders’ liquidity demand is
approximately of the form described in (9). The proofs are in Appendix C.3.

C.1. Environment

We assume that are two types of traders: noise traders and investors. Noise traders
are either buyers or sellers. At each trading date t, noise buyers submit an aggregate
buy order for N b

t shares, and noise sellers submit an aggregate buy order for N s
t shares.

Both N b
t and N s

t have IID normal distribution N (`N ,ΣN/2), therefore by subtracting
the mean we decompose them as follows:

N b
t = `N + εbt , N s

t = `N + εst , with εbt , ε
s
t ∼ N (0,ΣN/2). (C1)
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Investors have CARA utility with coefficient A. A mass one of investors is born in each
period t, and starts with an initial endowment in the risky asset that has a normal
distribution N (M,σ2

M), where M > 0 is the risky asset supply. Investors born at t do
the following: (i) observe the fundamental value vt before trading (ii) trade at the quotes
set by the dealer (at and bt) in period t on the exchange, (iii) collect the dividend before
t+ 1, and (iv) liquidate the asset at t+ 1 for a liquidation value equal to vt + u, where
u has a normal distribution N (0, σ2

u).
40

C.2. Equilibrium

To simplify notation, rather than treating the dividend D separately, we include it in
the liquidation value. We thus define Vt = vt + D to be the expected part of the total
liquidation value of an investor born at t. Before we analyze the equilibrium, we describe
the behavior of a CARA investor in the presence of ask and bid quotes. Define the lower
target X t and the higher target X t by:

X t =
Vt − at
Aσ2

u

, X t =
Vt − bt
Aσ2

u

. (C2)

The next standard lemma shows that a CARA investor born at t trades only when his
initial endowment in the risky asset is outside of the target interval [X t, X t]. In that
case, he trades exactly so that his final inventory is equal to the closest target.

Lemma C.1. Consider a risky asset with liquidation value V + u, with u ∼ N (0, σ2
u),

and a CARA investor with coefficient A who observes the value V and has endowment
x0 in the risky asset. The investor can buy any positive quantity at the ask quote a,
or sell any positive quantity at the price b, where a > b. Suppose the risk-free rate is
zero. Let X = V−a

Aσ2
u

and X = V−b
Aσ2

u
. Then, the investor’s optimal trade makes his final

inventory equal to either (i) X, if x0 < X, (ii) x0, if x0 ∈ [X,X], or (iii) X, if x0 > X.

Define the following numeric constants:

ρ0 =
1√
8π
≈ 0.1995, ρ1 =

1

2π
+

1

4
≈ 0.4092. (C3)

By aggregating the orders of all traders, we obtain the main result of this section.

Proposition C.1. The investors born at t submit aggregate orders Qb
t and Qs

t of the
form

Qb
t ≈

k0

2
(vt − at) + `0 −m0 + εbt , Qs

t ≈
k0

2
(bt − vt) + `0 +m0 + εst ,

with k0 =
2ρ1

Aσ2
u

, `0 = `N + ρ0σM , m0 =
ρ1

Aσ2
u

D + ρ1M,
(C4)

40A particular case occurs if investors’ liquidation value is vt+1. In that case, u = vt+1 − vt, which
has a normal distribution with standard deviation σu = σv. But in the paper we do not make this
restriction, and instead we regard σu as an independent parameter.
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and the error terms εbt and εst are IID with normal distribution N (0,ΣN/2). Both
approximations in (C4) represent equality up to terms of the order of 1/σM .

Proposition C.1 provides micro-foundations for the equations (9). For instance,
the imbalance parameter m0 arises from the fact that investors are risk averse and
therefore are more likely to be sellers than buyers when the asset is in positive net
supply (M > 0). The investor risk aversion A is therefore a key determinant of the
order flow characteristics. The next result shows how risk aversion affects the order flow
parameters (k0 and m0), as well as the average pricing discount which in equilibrium is
the ratio δ̄0 = 2m0/k0.

Corollary 5. The investor elasticity k0 and the imbalance parameter m0 are decreasing
in risk aversion A, while the average pricing discount δ̄0 = 2m0/k0 is increasing in A.

The intuition for this result is straightforward. If investors are more risk averse (A
is larger), they trade less aggressively and therefore their demands are less sensitive in
the mispricing (k is smaller). For the same reason as above, there is a smaller imbalance
between the sell and buy demands (m is smaller). Among the two, the effect of risk
aversion on investor elasticity dominates, and therefore when investors are more risk
averse, the average pricing discount is larger (δ̄ is larger). Since the cost of capital is
in one-to-one correspondence with the pricing discount (see Section 4.5), Corollary 5
implies that the cost of capital is also increasing in investors’ risk aversion.

C.3. Proofs of Results

Proof of Lemma C.1. This is a standard result in asset pricing, and therefore we
only provide the intuition. First, suppose there is only one trading price p (the buy
and sell prices are equal). Then, an investor with constant absolute risk aversion has
an optimal target inventory of the form X = V−p

Aσ2
u

. Therefore, regardless of his initial
endowment x0, the investor submits a market order such that his final inventory equals
X. When the buy and sell prices are different, there are two targets corresponding to
each price: X < X. A key fact is that the investor optimally must either buy at the
ask, or sell at the bid, but not both.41 In the first case, when the investor only buys, he
behaves like a CARA agent that faces the ask quote a, hence optimally trades up to the
lower target X. For this trade to be a buy, however, his initial endowment x0 must be
below X. Similarly, when x0 is above the higher target X, he sells down to X. Finally,
when x0 is in between the two targets, there is no incentive to trade and the CARA
agent’s target inventory in this case remains equal to x0.

Proof of Proposition C.1. We first introduce some notation. Define

φ(x) =
1√
2π

exp
(
−x2

2

)
, Φ(x) =

∫ x

−∞
φ(t)dt,

ψ(x) = Φ(−x)
(
φ(x)− xΦ(−x)

)
,

(C5)

41Because of the positive bid-ask spread, any quantity simultaneously bought and sold represents a
deadweight loss.
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where φ(x) is the standard normal density, and Φ(x) is the standard cumulative density.
One can check that the function ψ(x) defined in (C5) is positive and decreasing.

By assumption, there is a mass one of investors whose endowments are independent
and distributed according to the normal distribution N (M,σ2

M), with density g(x) =
φ
(
x−M
σM

)
/σM . Then, investors’ endowments integrate to

∫∞
−∞ xg(x)dx = M , which, since

the dealer has zero endowment, is indeed equal to the net supply of the risky asset.
To compute investor i’s optimal demand at t, note that by assumption his liquidation

value is Vt + ui, where Vt = vt + D is known by the investor, and ui is unknown and
distributed according to N (0, σ2

u). Thus, investor i computes E(Vt + ui) = Vt and
Var(Vt + ui) = σ2

u. Thus, the targets X t = Vt−at
Aσ2

u
and X t = Vt−bt

Aσ2
u

are common to all
investors.

According to Lemma C.1, the optimal demand of an investor depends on his ini-
tial endowment. By assumption, traders’ endowments are IID with normal distribution
N (M,σ2

M) and corresponding probability density function g(x) = 1
σM
φ
(
x−M
σM

)
. There-

fore, investors’ aggregate buy market order at t is equal to Ibt = P
∫ Xt

−∞(X t − x)g(x)dx,

where P =
∫ Xt

−∞ g(x)dx is the mass of investors with endowments below X t. Similarly,

investors’ aggregate sell market order at t is equal to Ist = P
∫∞
Xt

(x−X t)g(x)dx, where

P =
∫∞
Xt
g(x)dx is the mass of investors with endowments above X t. Finally, investors

with endowments between X t and X t do not submit any order. With the definition of
ψ in (C5), we compute

Ibt = ψ

(
M −X t

σM

)
, Ist = ψ

(
X t −M
σM

)
. (C6)

Consider the linear approximation of ψ near x = 0:

ψ(x) = ρ0 − ρ1x+O(x2), ρ0 = ψ(0) = 1√
8π
, ρ1 = −ψ′(0) = 1

2π
+ 1

4
, (C7)

where O(x2) represents the standard “big O” notation.42 The investors’ aggregate buy
order is thus Ibt = ρ0σM+ρ1(X t−M)+O(1/σM) = ρ1

Aσ2
u
(Vt−a)+ρ0σM−ρ1M+O(1/σM).

Also, from (C1), the noise buyers’ aggregate order at t is N b
t = `N + εbt , with εbt ∼

N (0,ΣN/2). By adding Ibt and N b
t , and using the fact that Vt = vt +D, we obtain that

the aggregate traders’ buy order at t, Qb
t = Ibt +N b

t , satisfies

Qb
t =

ρ1

Aσ2
u

(vt − a) +
(
`N + ρ0σM

)
−
( ρ1

Aσ2
u

D + ρ1M
)

+ εtb +O(1/σM). (C8)

Let k0 = 2ρ1
Aσ2

u
, `0 = `N + ρ0σM , m0 = ρ1

Aσ2
u
D + ρ1M . Thus, we have Qb = k0

2
(vt − a) +

`0 −m0 + εtb +O(1/σM) and similarly Qs = k0
2

(b− vt) + `0 +m0 + εts +O(1/σM). This
proves (C4).

Proof of Corollary 5. From (C4) we get k0 = 2ρ1
Aσ2

u
, m0 = k0D

2
+ ρ1M , which implies

2m0

k0
= D + 2ρ1M

k0
. Simple inspection shows that k0 and m0 are decreasing in A, while

2m0

k0
is increasing in A.

42This means that there is a number B > 0 such that
∣∣ψ(x)− (ρ0 − ρ1x)

∣∣ < Bx2.
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Proof of Corollary 5. From (C4) we get k0 = 2ρ1
Aσ2

u
, m0 = k0D

2
+ ρ1M , which implies

2m0

k0
= D + 2ρ1M

k0
. Simple inspection shows that k0 and m0 are decreasing in A, while

2m0

k0
is increasing in A.

Appendix D. Additional Tables
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Table D.1: Variable description

N(quotes)i,t Total number of quote updates in stock i over period t. (Source: TAQ)

N(trades)i,t Total number of trade executions in stock i over period t. (Source: TAQ)

QTi,t =
N(quotes)i,t
N(trades)i,t

Quote to trade ratio for stock i over period t. (Source: TAQ)

Rf,t Risk free rate, one month Treasury bill rate. (Source: WRDS/Kenneth
French Webpage)

Rm,t Value weighted return on the market portfolio. (Source: WRDS/Kenneth
French Webpage)

Ri,t, Rp,t return on stock i or portfolio p. (Source: WRDS/CRSP)

rm,t = Rm,t −Rf,t Excess return on the market. (Source: WRDS/Kenneth French Webpage)

ri,t = Ri,t −Rf,t Excess return on stock i. (Source: WRDS/TAQ)

rp,t = Rp,t −Rf,t Excess return on portfolio p. (Source: WRDS/TAQ)

rai,t Risk-adjusted return on stock (or portfolio) i. (Source: WRDS/TAQ)

rhml,t Value factor constructed by Kenneth French. (Source: WRDS/Kenneth
French Webpage)

rsmb,t Size factor constructed by Kenneth French. (Source: WRDS/Kenneth
French Webpage)

rumd,t Momentum factor (up-minus-down) constructed by Kenneth French.
(Source: WRDS/Kenneth French Webpage)

rliq,t Liquidity factor constructed by Pástor and Stambaugh (2003). (Source:
WRDS)

rpin,t Liquidity factor constructed by Easley et al. (2002). (Source: Soren Hvid-
kjaer Webpage)

QSPREADi,t Quoted spread. Difference between best ask quote and best bid quote
(measured in USD). (Source: TAQ)

SPREADi,t Relative spread. The quoted spread divided by the mid-quote price (mea-
sured in %). (Source: TAQ)

PRCi,t Price in USD. (Source: WRDS/TAQ)

USDV OLi,t Trading volume in USD (measured in mill. USD). (Source: WRDS/TAQ)

V OLUMEi,t Share volume (measured in mill.). (Source: WRDS/TAQ)

ILRi,t Amihud (2002) illiquidity ratio for stock i over period t calculated as
ILRi,t = [

∑
(USDvoli,t)/|ri,t|] · 106. (Source: WRDS/TAQ)

V OLATi,t Return volatility for stock i calculated as absolute return over period t.
(Source: WRDS/TAQ)

IDIOV OLi,t Idiosyncratic volatility for stock i measured as the standard deviation of
the residual from a three-factor Fama/French model on daily data as in
Ang et al. (2009). (Source: WRDS/TAQ)

MCAPi,t Market Capitalization of a stock, calculated as the number of outstanding
shares multiplied by price. (measured in mill. USD)

BMi,t Book-to-Market value for stock i calculated as the log of the book value
of equity divided by the market value of equity measured for the previous
fiscal year.

Analyst following Log of one plus the number of analysts following the firm. (Source: IBES)

Institutional ownership Holdings of institutions at the end of the year constructed from 13F files.
(Source: WRDS)

52



Table D.2: Sample stock descriptives

The table presents the monthly time-series averages of the cross-sectional 25th percetiles, means, medi-
ans, 75th percentiles, and standard deviations of the variables for the sample stocks. The sample period
is June 1994 through October 2012, and only NYSE/AMEX and NASDAQ listed stocks are included
in the sample. Stocks with a price less than USD 5, above USD 1000, or with less than 100 trades in
month t-1 are removed. Stocks that change listings exchange, CUSIP or ticker symbol are removed.

p25 Mean Median p75 Std.dev
Number of sample stocks (whole sample=6278) 2854 3126 3048 3368 391
MCAP (in mill. USD) 70 2570 252 1047 13418
PRC (Price in USD) 8 22 17 29 24
USDVOL (in mill. USD) 2 393 19 140 2261
VOLUME (in 1000 shares) 237 12331 1307 6391 69839
N(quotes) (in 1000) 1 166 9 110 504
N(trades) (in 1000) 0 28 2 16 111
QT (quote to trade ratio) 0.80 25.03 3.13 9.88 162.91
RSPREAD (%) 0.26 2.19 1.19 2.93 3.03
SPREAD 0.04 0.28 0.18 0.39 0.48
ILR (%) 0.036 8.331 3.402 2.389 121.071
VOLA 0.006 0.027 0.012 0.029 0.066
BM (log) 0.32 0.74 0.56 0.89 1.03
rm (value weighted excess market return) -0.018 0.001 -0.001 0.021 0.035
ri (indiv. stock mid-quote excess returns, delist adj.) -0.014 0.003 0.002 0.018 0.032
rsmb (SMB factor return) -0.017 0.005 0.002 0.024 0.039
rhml (HML factor return) 0.198 0.456 0.435 0.692 0.297
rumd (UMD factor return) -0.058 0.014 0.003 0.071 0.153
rliq (Pastor/Stambaugh liquidity factor return) -0.129 0.129 0.094 0.334 0.489
Institutional Ownership 0.000 0.000 0.000 0.000 0.000
R1 (lagged 1 month return in month t-1) 0.000 0.000 0.000 0.000 0.000
R212 (cumulative returns month t-12 through t-2) 0.000 0.000 0.000 0.000 0.000
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Table D.3: FMB regressions using t-2 information

The table reports the Fama and MacBeth (1973) coefficients from a regression of risk-adjusted returns
using lag QT. The firm characteristics are measured in month t−2, except R1 and R212. The variables
included are: relative bid/ask spread (SPREAD), Amihud illiquidity ratio (ILR), log market value of
equity (MCAP ), log book to market ratio (BM) calculated as the log of the book value of equity divided
by the market value of equity measured for the previous fiscal year, previous month return (R1), and
the cumulative return from month t−2 to t−12 (R212), idiosyncratic volatility (IDIOV OL) measured
as the standard deviation of the residuals from a Fama and French (1992) three factor model regressed
on daily raw returns within each month as in Ang et al. (2009), and log USD volume (USDV OL). All
coefficients are multiplied by 100. The standard errors are corrected by using the Newey-West method
with 12 lags. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% level, respectively. Panel A
presents the results for information delay and Panel B presents the results on liquidity.

(1) (2) (3) (4) (5)

Const. 0.004∗∗∗ 0.012∗∗∗ 0.009∗∗∗ 0.027∗∗∗ 0.030∗∗∗

QTi,t−2 -0.200∗∗∗ -0.240∗∗∗ -0.248∗∗∗ -0.145∗∗∗ -0.148∗∗∗

SPREADi,t−2 0.132∗∗∗ 0.072∗ 0.034
ILRi,t−2 0.088∗∗∗ 0.057∗ -0.047∗

MCAPi,t−2 -0.060 -0.073
BMi,t−2 0.063 0.063
R1i,t−2 -5.111∗∗∗ -5.111∗∗∗

R212i,t−2 0.100 0.129
IDIOV OLi,t−2 -9.254∗∗∗ -11.167∗∗∗

USDV OLi,t−2 0.034 0.004
PRCi,t−2 -0.473∗∗∗ -0.439∗∗∗

R2 0.01 0.01 0.01 0.03 0.04
Time series (months) 216 216 216 216 216
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Table D.4: Stock risk-adjusted returns and quote-to-trade ratio subsample

The table reports the Fama and MacBeth (1973) coefficients from regressions of risk-adjusted returns

for single stocks, given by rai,t = ri,t −
∑J
j=1 βi,j,t−1Fj,t for two subsamples, before and after the

introduction of algorithmic trading in 2002. Pre-2002 refer to t he period from June 1994 to December
2002 and Post-2002 refers to the period from January 2003 to October 2013. The firm characteristics
are measured in month t− 1. The variables included are: relative bid/ask spread (SPREAD), Amihud
illiquidity ratio (ILR), log market value of equity (MCAP ), log book to market ratio (BM) calculated
as the log of the book value of equity divided by the market value of equity measured for the previous
fiscal year, previous month return (R1), and the cumulative return from month t− 2 to t− 12 (R212),
idiosyncratic volatility (IDIOV OL) measured as the standard deviation of the residuals from a Fama
and French (1992) three factor model regressed on daily raw returns within each month as in Ang et al.
(2009), log USD volume (USDV OL), and log price (PRC ). All coefficients are multiplied by 100. The
standard errors are corrected by using the Newey-West method with 12 lags. ∗∗∗, ∗∗, and ∗ indicate
significance at the 1%, 5%, and 10% level, respectively.

Pre-2002 Post-2002

Const. 0.030∗∗ 0.041∗∗

QTi,t−1 -0.156∗∗ -0.088∗

SPREADi,t−1 0.068∗∗ 0.007
ILRi,t−1 0.031 -0.033
MCAPi,t−1 -0.351∗∗∗ -0.115
BMi,t−1 0.302∗∗∗ -0.123∗

R1i,t−1 -4.144∗∗∗ -4.643∗∗∗

R212i,t−1 0.566 -0.369
IDIOV OLi,t−1 -17.318∗∗∗ -8.464∗∗

USDV OLi,t−1 0.390∗∗∗ -0.031
PRCi,t−1 -0.516∗∗∗ -0.361∗∗∗

R2 0.04 0.04
Time series (months) 100 116
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