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Abstract
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1 Introduction

Long term investing is an important concern of individual investors (e.g. saving for retire-

ment) and of financial intermediaries (e.g. managing pension funds). A popular advise

for a moderate-risk US retirement portfolio is the 60/40 rule of thumb, i.e. to hold 60%

of marketable wealth in stocks and the remainder (40%) in bonds (Campbell and Viceira

(2002)). However, it remains unclear when such a two-fund portfolio strategy is optimal,

why these proportions are (roughly) optimal and what exactly constitutes the risky asset

position. This paper aims to address such questions. In particular, we discuss practical

aspects of optimal long-term investing with particular focus on identifying settings where

dynamic asset allocation strategies remain rather simple.

There exists an extensive literature on the optimization of expected utility from terminal

wealth and consumption-savings portfolios, including, e.g. Merton (1971), Epstein and Zin

(1989), Duffie and Epstein (1992b), Campbell and Viceira (1999), Chacko and Viceira (2005),

and Kraft et al. (2013). In this literature, the martingale technique has turned out to

be a promising approach; see Cox and Huang (1989), Cvitanić and Zapatero (2004) and

Pennacchi (2008) for details. Our paper is rooted in our observation that the martingale

technique expresses desired asset allocations in terms of, so-called, stochastic discount factors

(henceforth SDFs, also known as pricing kernels).

This paper draws attention to properties of SDFs and relaxes the restrictive assumptions

of classical no-arbitrage theory, which relies on the risk neutral pricing paradigm. Instead,

we argue for the additional and rather natural requirement that the SDF be tradeable. We

introduce and discuss the notion of minimum pricing, which allows us to use a generalized

martingale technique and thereby show that our notion of tradeable SDF plays an important

role in asset allocation. This addresses two of our initial questions: when are two-fund

strategies optimal and what characterizes the risky asset position?

We stress the fact that the, so-called, growth optimal portfolio of the given investment

universe (henceforth GP), see Kelly (1956) and Merton (1971), plays a central role in the

solutions of most optimal investment strategies. Along these lines, minimum pricing relates

to the benchmark pricing theory of Platen (2002), and Platen and Heath (2010), which opens

a much wider, and thus more realistic, modeling world than available under the classical no-

arbitrage paradigm.

Our paper points out that the inverse of the GP is the natural choice of SDF and so

we focus on this SDF thereafter. We draw attention to the stochastic dynamics of the GP

and show that the optimal investment strategy simplifies dramatically when the dynamics

of the GP is Markovian. In this, for a modeler appealing, yet also rather realistic situation,

2



the resulting optimal strategies allocate assets into a few funds only. In particular, we show

for a Markovian GP model with one driving source of uncertainty, that the optimal asset

allocation consists of two funds: the riskless asset and the GP.

Finally, we carry out an empirical evaluation of investment strategies that are derived

from a particular model. Although the model does not satisfy classical no-arbitrage assump-

tions, its long-term dynamics are realistic and permit asset allocation in a now practically

tractable manner. Our long-term investment strategies relate to higher long-term growth

and achieve objectives less expensively than possible under the classical paradigm. Along

these lines we also address the initial quantitative question of what constitutes an optimal

proportion between riskless and risky assets.

The literature has made tremendous advances in the theoretical understanding of asset

management. It appears that many mathematical aspects have been clarified to a large

extent. However, there remain intriguing problems that impede their practical relevance

beyond simple situations. We contribute to this literature by addressing three formidable

difficulties.

First, long term investing addresses changes in the investment opportunity set over time

(Campbell and Viceira (2002)) but solving the associated dynamic optimization problem is

intrinsically hard. Moreover, the known solutions suggest that the optimal dynamic trading

strategies are, in general, rather complex. Our approach, however, reduces the asset alloca-

tion to investing into a few funds, including a single risky fund that is closely related to the

stochastic dynamics of the tradeable SDF.

Second, the current literature provides the impression that qualitative insights depend

crucially on the underlying setup, in particular, on the concrete parametric formulation of the

investment objective. For example, different preference specifications, e.g. additive utility

versus recursive utility preferences, seem to lead to asset allocations that are widely different.

The current paper provides a unifying theory that clarifies in optimal asset allocation the

crucial link to tradeable SDFs and thereby stresses commonalities. We show that our results

hold, whenever investors that maximize utility from terminal wealth or consumption aims

for the least expensive strategy.

MacLean et al. (2010) and Davis and Lleo (2015) note that several legendary investors,

including John Maynard Keynes, Warren Buffet and Bill Gross follow strategies that maxi-

mize long-term growth. Moreover, Christensen (2012) provides an excellent description of an

older lively literature that recommends using such strategies. He explains forcefully the dif-

ferences between growth maximization and utility maximization. However, the current paper

employs the concept of minimum pricing to shows that utility maximization in the presence

of a tradeable (unknown) SDF is intrinsically linked to growth maximization. Thereby, we
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provide a fresh look at the older growth optimal investing literature and additional support

for common long-term practitioner strategies.

Third, the practical implementation of theoretical investment strategies is currently a

daunting task. Typically, it involves dynamic asset allocation in a wide range of securities to

capture the impact of the theoretically possible driving factors, which represents a seemingly

infeasible challenge in implementation. To make matters worse, modeling the entire market

dynamics and reliably estimating, in particular, means but also covariances of a large number

of assets is hard in practice; see DeMiguel et al. (2009). Our approach provides a considerable

simplification in this endeavor as it calls attention to modeling the dynamics of the GP. In

particular, we introduce a realistic, univariate long-term dynamics for the GP and show that

it can be reliably implemented leading to superior, two fund investment strategies.

The paper is organized as follows: Section 2 introduces our setup, while the following

Section discusses structural properties of price dynamics. Section 4 uses these to characterize

optimal portfolio choice in terms of the GP. This draws our attention to modeling the price

dynamics of the GP in Section 5 which allows us to gain structural insights into portfolio

construction. The following Section links our results to well-known ones from the literature.

Section 7 evaluates the performance of our model in comparison to other approaches. Section

8 concludes the paper.

2 The Market Environment

We assume a filtered probability space (Ω,A,A, P ), where P denotes the real-world prob-

ability measure. A0 is assumed to be the trivial σ-algebra. The filtration A = (At)0≤t<∞

describes the evolution of information in the market, i.e. at any time t ∈ [0,∞) the σ-algebra

At describes the information available at that time.

2.1 Assets and Portfolios

We consider a market composed of d+1 primary security accounts. These securities include

the locally risk-free base line asset S0
t = 1, t ∈ [0,∞). In addition, the market is composed

of d risky primary security accounts Sj = (Sjt )t∈[0,∞), j = 1, . . . , d, where all payments (e.g.

dividends, income or interest) are reinvested, and Sjt is denominated in units of S0
t . Note

that one could also include, e.g. human capital, intellectual property, production facilities, or

other (non-)financial assets in the given investment universe, as long as they can be traded.

In line with Merton (1971), we assume perfect capital markets: trading in the securities

takes place continuously in time; there are no transaction costs; at any point in time lo-
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cally risk-free, instantaneous investing and borrowing is possible; the securities are infinitely

divisible, and short sales with full use of proceeds are allowed.

For simplicity, we illustrate our approach for continuous dynamics, only, but dynamics

involving jumps can be handled similarly. Also, for illustration purposes, we denominate our

securities in units of the locally risk-free savings account, our baseline asset. However, our

methodology allows many denominations. From a consumption-savings portfolio perspective,

for example, one may prefer to denominate prices in units of the consumer-price index (CPI),

i.e. employing an inflation rate accruing account as denominator.

The dynamics of the risky j-th primary security account Sjt is given through the stochastic

differential equation (SDE)

dSjt = Sjt

(
ajtdt+

d∑
k=1

bj,kt dW
k
t

)
= Sjt

(
ajtdt+ bj⊤t dWt

)
, (1)

t ∈ [0,∞). Here, Sj0 > 0 is given for j = 1, . . . , d, and W 1,W 2, . . . ,W d are d independent

Brownian motions modeling the traded uncertainty. We denote by ⊤ the vector/matrix

transpose and by Wt = (W 1
t , . . . ,W

d
t )

⊤ the d-dimensional vector of the values of the inde-

pendent Brownian motions at time t. We define aSt = (a1t , . . . , a
d
t )

⊤ as the d-dimensional

(instantaneous) appreciation rate vector, and bSt = (bj,kt )j,k=1,...,d = (bj⊤t )j=1,...,d as the d× d-

dimensional (instantaneous) volatility matrix. Both stochastic processes are assumed to be

adapted to the filtration (At)0≤t<∞ and may be driven also by sources of uncertainty other

than the traded uncertainty modeled by W . This allows one to capture state variables that

describe some (potential) incompleteness in this market. We assume that the respective

system of SDEs has a unique strong solution, see e.g. Section 7.7 in Platen and Heath

(2010).

Throughout this paper we adopt the following assumption:

Assumption 1 Almost surely under the real-world probability measure P , the volatility ma-

trix bSt is invertible with inverse bS,−1
t for all t ∈ [0,∞), and the process (bSt )t∈[0,∞) satisfies

the condition
∫ T
0

∑d
j,k=1(b

j,k
t )2dt <∞ for all T ∈ [0,∞).

The invertibility assumption for the volatility matrix ensures that the d-dimensional

vector

θt = bS,−1
t aSt (2)

is well-defined at all times, and we refer to θt as the market-price-of-risk vector at time

t. A consequence is that θt becomes the volatility of the unique and finite growth optimal
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portfolio (GP), as we discuss later. The second condition in Assumption 1 ensures sufficient

integrability of the stochastic Itô integrals involved.

2.2 Preferences

We introduce an indicator variable χ ∈ {0, 1}, fix T ∈ [0,∞) and denote by V0 the investor’s

initial wealth, as well as, by π = (πt)0≤t≤T the (vector) process of wealth weights, with

πt = (π1
t , π

2
t , . . . , π

d
t )

⊤. Here, πjt denotes the relative weight of the time t ∈ [0, T ] investment

in the risky primary security Sjt , j = 1, . . . , d. Note that π0
t = 1 −

∑d
j=1 π

j
t is the fraction

invested in the locally riskfree baseline asset. (Negative weights indicate borrowing.) We

denote by C = (Ct)0≤t≤T the agent’s consumption process, financed by the initial capital

V0 and through the investment strategy π. Then, the agent’s wealth is given by the (self-

financing) process (V π
t )0≤t≤T , satisfying by (2) the SDE

dV π
t =

(
π⊤
t a

S
t V

π
t − χCt

)
dt+ (π⊤

t b
S
t )V

π
t dWt (3)

=
(
π⊤
t b

S
t θtV

π
t − χCt

)
dt+ (π⊤

t b
S
t )V

π
t dWt. (4)

For a given parameter ε ≥ 0 and given indicator variable χ ∈ {0, 1}, our objective is to

determine a process J = (Jt)t∈[0,T ] that solves the optimization

Jt = max
π,C

E

[∫ T

t

χf(Cs, Js, s)ds+ εB(V π
T )

∣∣∣∣At

]
, (5)

for all t ∈ [0, T ). Here, at any time t ∈ [0, T ), the maximization is taken over the remain-

ing time period [t, T ] by choosing a respective portfolio weight process π and consumption

process C with associated self-financing wealth process (4). Furthermore, we employ in (5)

the conditional expectation E[·|At] under the real-world probability measure P , given the

information at time t, encapsulated in At. The time t information includes the value of the

portfolio V π
t at time t. The process J characterizes the, so-called, life-time utility derived

from consumption.

Throughout this paper we adopt, for simplicity, the following additional assumption on

the utility functions involved:

Assumption 2 For given s ∈ [0, T ] and l ∈ R the functions f(·, l, s), B(·) : R+ → R are

twice differentiable, strictly increasing, strictly concave and fulfill the Inada conditions, i.e.

limx↓0 f
′(x, l, s) = limx↓0B

′(x) = ∞ and limc→∞ f ′(c, l, s) = limx→∞B′(x) = 0.

The parameters ε and χ allow us to study a variety of portfolio choice problems. The case

χ = 0, ε > 0 corresponds to the problem of a price taking agent who maximizes expected
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utility derived from terminal wealth V π
T , as in Merton (1971), i.e. a portfolio choice problem

without consumption (a so-called asset allocation problem); the function B plays here the

role of the utility function.

The case χ = 1 corresponds to a consumption-savings problem (or intertemporal con-

sumption and portfolio choice problem) either with bequest (ε > 0) or without bequest

(ε = 0). The parameter ε controls the importance of bequest relative to the utility derived

from consumption. Our specification in (5) captures, among others, the usual case of time-

separable utility, as well as, the continuous-time version of, so-called, Epstein-Zin preferences

introduced within the context of stochastic differential utility by Duffie and Epstein (1992a),

see Appendix A. We will discuss in Subsections 6.2 and 6.3 examples of time-additive prefer-

ences over consumption and of preferences over terminal that are covered. Whenever needed,

we assume existence and uniqueness of stochastic differential utility in the sense of Duffie

and Epstein (1992a).

In a general market setting, the conditional expectation (5) is usually a rather complex

function of many state variables. This makes practical applications of the theoretical optimal

strategy difficult, if not seemingly impossible: (too) many quantities have to be accurately

modeled and estimated to obtain a practically useful strategy. It is well known that the

estimation of parameters characterizing expected returns requires longer observation win-

dows than available in reality, see e.g. Kan and Zhou (2007) and DeMiguel et al. (2009).

Furthermore, estimated covariance matrices of returns are stochastic themselves and, in gen-

eral, extremely difficult both to estimate and to invert with meaningful outcomes, especially

for a large number of assets, see e.g. Bai and Ng (2002), Ludvigson and Ng (2007) and

Okhrin and Schmid (2006). Notwithstanding these difficulties in general, the main emphasis

of this paper is to point out realistic and practically relevant situations, where the condi-

tional expectation in (5) becomes a function of the current time t and potentially a few, well

observable state variables.

3 Structural Properties of Price Dynamics

A crucial determinant of asset allocation is the price dynamics of securities. To prepare

for our asset allocation analysis in the next section we, therefore, characterize some of their

structural properties. The first subsection discusses pricing through a (generalized) stochas-

tic discount factor (SDF). The second subsection stresses the tradeability of the SDF. The

following subsection identifies tradeable SDFs, i.e. they are given as the inverse of the, so-

called, growth optimal portfolio (GP). The fourth subsection discusses the benchmark pricing

theory and introduces minimum pricing. The fifth subsection explains how minimum pricing
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is useful for analyzing optimal portfolio allocations.

3.1 Stochastic Discount Factor

The absence of arbitrage opportunities in market dynamics is a common assumption in

classical financial economics, often employed to ensure well-defined financial markets. The

workhorse underpinning modeling efforts is the Fundamental Theorem of Asset Pricing,

which asserts that the absence of, so-called, classical arbitrage opportunities is equivalent

to the existence of an equivalent risk-neutral probability measure; see Harrison and Kreps

(1979) and Delbaen and Schachermayer (2006). In the language of financial economics this is

equivalent to the existence of a stochastic discount factor (SDF) with respective properties;

see e.g. Cochrane (2001). Unfortunately, staying in the classical no-arbitrage framework

comes at the cost of restrictive and, potentially, unrealistic modeling assumptions that im-

pede its application in practice; see e.g. Loewenstein and Willard (2000) and Baldeaux et al.

(2015).

This paper takes a more general approach, in line with a growing literature that avoids

classical no-arbitrage assumptions and recommends working in a wider modeling world than

the one that assumes the existence of an equivalent risk-neutral probability measure; see

e.g. Loewenstein and Willard (2000), Platen (2002), Platen (2006), Karatzas and Kardaras

(2007), Fernholz and Karatzas (2010) and Platen and Heath (2010). Compared to the more

general approach we pursue, the consequences of the classical, more restrictive assumptions

for short term investing may be minor. However, the long-term consequences are substantial,

as we demonstrate.

By generalizing concepts and ideas presented in the wide literature on classical asset

pricing that have been well summarized in Cochrane (2001), let us introduce the following

assumption:

Assumption 3 There exists an adapted, strictly positive process (Fs)0≤s≤T , T ∈ [0,∞) such

that 0 < Ft < ∞ almost surely for t ∈ [0, T ], and such that for all primary securities Sjt ,

j = 0, . . . , d, and value processes of self-financing portfolios the SDE for the product of Ft

and the value or price process is driftless, in particular, (Ft ·Sjt )0≤t≤T is driftless. To be even

more precise, we assume that we can write

dFt = Ft(a
F
t dt+ bF⊤

t dWt + cF⊤
t dW̄t) (6)

with F0 = 1 for a suitable adapted real valued process aF , a suitable adapted vector process

bF = (bF1, . . . , bFd)⊤, and a suitable adapted vector process cF = (cF1, . . . , cFn)⊤, with non-
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negative integer n. Here, the non-traded uncertainty W̄ = (W̄ 1, . . . , W̄ n)⊤ is given by a

vector process of n independent Brownian motions that are independent of the Brownian

motion vector process W , the traded uncertainty. We refer to F with these properties as a

stochastic discount factor (SDF).

This assumption is weaker than the classical one, where the product process (Ft ·Sjt )0≤t≤T
must form an (A, P )-martingale. Here we only require these processes to form local martin-

gales. Assumption 3 allows us to discuss in a more flexible, transparent and unified manner

different trade-offs in terms of pricing and asset allocation that a modeler faces. In particu-

lar, the well-established literature on asset pricing relates conveniently, as a special case, to

our approach.

The common modeling approach starts with assuming the existence of a risk-neutral

probability measure. Such a restriction blends together two conditions that we both relax in

Assumption 3. First, under classical no-arbitrage assumptions, one typically assumes that

for any price process (At)t∈[0,T ] the product (AtFt)0≤t≤T forms a true martingale, which leads

to the pricing rule

AtFt = E[AsFs|At] (7)

for all 0 ≤ t ≤ s ≤ T . In Assumption 3 we only request that AtFt is driftless, and, thus,

forms a local martingale. Second, the pricing rule (7) recovers so-called classical risk-neutral

pricing, see Cochrane (2001), if and only if (Ft)0≤t≤T forms a true martingale. The risk-

neutral probability measure is in this case characterized via the Radon-Nikodym density

process (Ft)0≤t≤T . We underline the crucial fact that Assumption 3 permits a much wider

class of models where Ft needs only to form an (A, P )-local martingale, and the pricing rule

(7) is only one of many possible ones.

As we will see later on, it is a rather strong assumption of the common classical modeling

approach that an asset price multiplied by an SDF needs to form a true martingale. We em-

phasize once more that we do not assume this property in the current paper. Consequently,

the pricing rule (7) does not need always to hold in our more general setting. Furthermore,

even if the pricing rule would hold, this may not necessarily imply that (Ft)0≤t≤T itself needs

to form a true martingale. This does not mean that we could not have in our market price

processes that result from formally applying the risk-neutral pricing rule. However, we only

request in Assumption 3 that the resulting price processes, when multiplied with the SDF,

have no drift, thus form local martingales.

While the local martingale property in Assumption 3 is significantly relaxed (compared to

the martingale property), it imposes still restrictions. These allow us to derive the following

conclusions: First, Assumption 3 in (6) implies with respect to the locally risk-free asset
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S0
t = 1 that aFt = 0. Furthermore, by equations (1) and (2), it follows via the Itô formula

with respect to all risky securities Sjt with j = 1, . . . , d that

d(FtS
j
t ) = Fta

j
tS

j
t dt+ Ftb

j⊤
t Sjt dWt + SjtFtb

F⊤
t dWt + SjtFtc

F⊤
t dW̄t + bj⊤t bFt FtS

j
t dt

= SjtFt

(
ajt + bj⊤t bFt

)
dt+ SjtFt

(
bj⊤t + bF⊤

t

)
dWt + SjtFtc

F⊤
t dW̄t

= SjtFt

{
bj⊤t
(
θt + bFt

)
dt+

(
bj⊤t + bF⊤

t

)
dWt + cF⊤

t dW̄t

}
.

For this SDE to be driftless, we must have bj⊤t
(
θt + bFt

)
= 0 for all j = 1, . . . , d. This means

that we need to have bFt = −θt, i.e. by (6) we obtain

dFt
Ft

= −θ⊤t dWt + cF⊤
t dW̄t. (8)

We emphasize that this is the generic form of an SDF in our market.

3.2 Tradeability of SDF

Our definition of an SDF in Assumption 3 explicitly allows the SDF to be driven by traded

and potentially also by non-traded uncertainty, see equation (6). Therein, the SDF F =

(Ft)0≤t≤T , satisfying equation (8) can be represented as

Ft = F0 exp

{
−1

2

∫ t

0

θ⊤s θsds−
∫ t

0

θ⊤s dWs

}
F̃t, (9)

with factor

F̃t = exp

{
−1

2

∫ t

0

cF⊤
s cFs ds+

∫ t

0

cF⊤
s dW̄s

}
. (10)

The process F̃ is driven by non-traded uncertainty and, therefore, cannot be hedged through

dynamic asset allocation. The decomposition (9) shows that introducing non-tradeable un-

certainty into the SDF is equivalent to introducing a non-hedgeable factor process F̃ in the

construction of the SDF. Theoretically, this factor process seems to provide wider generality

for the notion of an SDF. However, as we will argue now, it appears not to provide any

usable flexibility in practical valuations or hedging.

The factor F̃ is not unique but, by definition, any choice of F̃ must not be driven by any

traded uncertainty. Taking a formal look at this fact from the valuation perspective, one

notes that, in order to make the pricing rule (7) work, say, under classical assumptions, the

process F̃ has to be a true martingale. As a consequence of basic rules of stochastic calculus,

the non-traded uncertainty F̃ in (9) does not impact in (7) the prices of any hedgeable
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payoffs and is, therefore, redundant in such a valuation approach. As such it is superfluous

when pricing replicable claims.

There is an additional conceptual argument against introducing a superfluous factor F̃

into an SDF, taken from the perspective of practical implementation of optimal portfolio

choices. We will see in the next sections that optimal portfolios and their price processes

become driven by the SDF. Therefore, when the factor F̃ is not replicable from traded

security prices, i.e. when non-traded sources of uncertainty drive the SDF, then optimal

portfolios and their price processes become driven by non-tradeable uncertainty, i.e. require

investing in non-tradeable factors. To implement such strategies, we would have to make

non-tradeable uncertainty tradeable, which defeats the purpose.

In summary, the generality of the forms of the dynamics of the SDF satisfying (8), which

involves the factor F̃ , is artificial and evaporates from the perspective of practical feasibility.

Based on these insights, in the remainder of this paper we remove from the SDF, given in (9),

the superfluous non-tradeable factor F̃ . Instead we offer more practically relevant flexibility

in the current paper than under classical assumptions: we allow (AtFt)t∈[0,T ] to form strict

local martingales (our approach) instead of true martingales (classical approach). We will

demonstrate that this flexibility is important for making long-term investing less expensive.

Consequently, throughout this paper, we work with an SDF satisfying (8) with cFt = 0,

that is the SDF satisfies from now on the SDE

dFt = −Ftθ⊤t dWt, (11)

for t ≥ 0 and F0 = 1.

3.3 The Inverse Growth Optimal Portfolio as SDF

The previous subsection introduced the notion of a tradeable SDF, which we identify in this

subsection and for which we discuss here implications for pricing.

The growth optimal portfolio (GP) with value V πGP

t = V GP
t at all times t ∈ [0, T ],

characterized as the portfolio with V GP
0 = 1, is unique and has wealth weights

πGPt = bS,−1,⊤
t θt (12)

at time t ∈ [0, T ] (without consumption, C = 0). Based on equation (4) it fulfills the SDE

dV GP
t = (πGP⊤

t aSt )V
GP
t dt+ πGP⊤

t bSt V
GP
t dWt,

= V GP
t

{
(θ⊤t θt)dt+ θ⊤t dWt

}
(13)
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for t ≥ 0 with V GP
0 = 1. By Assumption 1 the GP exists in our market, i.e. due to its finite

expected instantaneous growth rate 1
2
θ⊤t θt, it is strictly positive and finite at any finite time.

By application of the Itô formula to 1/V GP
t we find that

Ft =
1

V GP
t

(14)

for t ≥ 0 solves the SDE (11). Thus, the inverse of the GP is a suitable choice of an SDF in

the sense of Assumption 3.

Additionally, the SDF (14) is tradeable. By Assumption 3, any other candidate for a

tradeable portfolio that can be used as a numéraire should, when used as denominator for

the GP, generate a strictly positive local martingale, which by Fatou’s Lemma is then a

supermartingale, see Platen and Heath (2010) Theorem 10.2.1. But also the GP, when used

as denominator for the candidate portfolio, is a local martingale, and, thus, a supermartin-

gale. By Jensen’s inequality, these two supermartingales can only equal the constant one.

Therefore, the tradeable SDF (14) is unique.

In the remainder of this paper we set F according to equation (14), or equivalently

according to the SDE (11).

3.4 Benchmark Pricing Theory

The benchmark pricing theory, proposed by Platen (2002), assumes only the existence of the

GP, which it calls benchmark, and makes it its central building block. Any value multiplied

with Ft is called a benchmarked value. In particular, we denote by Ŝjt =
Sjt
V GPt

the respective

benchmarked value of the primary risky security Sjt , j = 1 . . . , n, and consider the bench-

marked wealth process V̂ π = Vt
V GPt

without consumption (C = 0). (The next subsection will

study benchmarked (consumption-adjusted) wealth processes Ĝπ.)

Through the existence of the GP, see Platen and Heath (2010), there is no economically

meaningful arbitrage in the market, in the sense that no strategy can generate in finite time

a strictly positive portfolio with infinite wealth from finite initial capital. Under classical

no-arbitrage assumptions, Long (1990) made the observation that the risk-neutral price can

be recovered by choosing the GP as numéraire and the real world probability measure as

pricing measure. This means, the pricing rule (7) with Ft = 1/V GP
t recovers in the classical

setting the risk-neutral price for a replicable contingent claim. Therefore, the GP is also

termed the numéraire portfolio (NP).

The benchmark pricing theory goes much further than reformulating classical risk-neutral

pricing, it drops the classical assumptions, see Platen and Heath (2010), and requests instead
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only the existence of the GP. It employs then the GP as denominator, numéraire and bench-

mark. In summary, the benchmark pricing theory obtains a unique and tradeable SDF by

setting Ft equal to the locally riskless baseline security, denominated in units of the GP. This

means that the SDF Ft represents the inverse of the discounted GP. Therefore, by setting

F̃t = 1, t ≥ 0 in (10), we identify via (14) the inverse F−1
t with the discounted benchmark

V GP
t .

In the general setting of the benchmark pricing theory, several self-financing portfolios

can replicate the same payoff. While this means that the classical Law of One Price may

not hold any longer in the more general modeling world we consider, this does not permit

creation of any economically meaningful arbitrage: the absence of economically meaningful

arbitrage should be interpreted in the sense that there does not exist a strictly positive

portfolio that has an infinite instantaneous growth rate such that it could become infinite

in finite time; see Platen and Heath (2010). Most importantly, from a conceptual viewpoint

we note that the failure of the Law of One Price allows several pricing rules to coexist. For

instance, one can formally apply the risk-neutral pricing rule even when F does not form a

true martingale. However, as we will see now, there exists always a minimum price, which

is uniquely determined.

As indicated earlier, the growth optimal portfolio (GP) maximizes expected logarithmic

utility derived from terminal wealth. The GP is the best performing, strictly positive port-

folio in the sense that in the long run its value surpasses almost surely the value of all other

strictly positive portfolios, see e.g. Platen and Heath (2010), Theorem 10.5.1. This also

means that the inverse of the GP, our SDF, is the inverse of the portfolio that leads, in the

long run, almost surely to lower values than the inverse of any other strictly positive portfolio

could achieve. When we employ the inverse of the GP as SDF we, therefore, can intuitively

expect it to lead us to the lowest prices possible among all potential price processes for a

targeted payoff. This means, when one employs the benchmarked savings account as SDF,

one obtains intuitively via the pricing rule (7) the minimal possible price process.

To make this precise we introduce the notion of a fair price or value process:

Definition 4 A price or value process (At)0≤t≤T is called fair, when it satisfies the pricing

rule (7) with the inverse of the GP as SDF F = 1/V GP , that is

At
V GP
t

= E

[
As
V GP
s

∣∣∣∣At

]
(15)

for 0 ≤ t ≤ s ≤ T .

This means that the benchmarked value Ât =
At
V GPt

= FtAt forms an (A, P )-martingale.
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In formula (15) pricing is performed under the real-world or objective probability measure

P with the inverse of the GP as SDF. In Platen and Heath (2010) this is referred to as

real-world pricing and the formula (15) is called the real world pricing formula.

Assumption 3 requires that all benchmarked prices form local martingales. This implies

that all benchmarked wealth processes (without consumption) are local martingales and,

thus, supermartingales. It is known, see Lemma A1 in Du and Platen (2016), that a martin-

gale is the minimal non-negative supermartingale that delivers at a bounded stopping time

a targeted nonnegative integrable payout. This fact implies that the benchmarked wealth

process, which aims for the minimal possible initial expense to deliver some specified payoff,

must be a martingale, and, thus, by Definition 4 it must be a fair price process. The respec-

tive martingale exists and is unique because its benchmarked value at a given time is the

conditional expectation of the benchmarked portfolio value at maturity under the available

information.

We summarize this insight as follows:

Corollary 5 The minimal price or value process that delivers a targeted payoff needs to

be fair. More expensive price or value processes are possible that when benchmarked form

non-negative local martingales, and, thus, supermartingales.

It is important to emphasize that our assumptions assure the existence of the GP, and

avoid the restrictive classical no-arbitrage assumptions. In particular, we avoid the request

on the existence of an equivalent risk-neutral probability measure. This opens up a much

wider modeling world than provided under classical no-arbitrage assumptions.

3.5 Minimum Pricing of Consumption-Savings Investments

The previous subsection introduced the notion of real-world pricing and showed that it leads

to minimal possible prices. Let us now apply this pricing approach for consumption-savings

investments.

Recall that for any traded security with value Sjt we denote by Ŝjt =
Sjt
V GPt

= SjtFt its

benchmarked value. For a given consumption-savings investment strategy (π,C) we denote

for t ∈ [0, T ] the benchmarked wealth process by V̂ π
t = V π

t Ft, and the consumption-adjusted

wealth process Gπ by

Gπ
t = V π

t + χ

∫ t

0

Csds, (16)

leading with

Ĝπ
t = Gπ

t Ft, (17)
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to the benchmarked (consumption-adjusted) wealth process Ĝπ. Equations (4) and (8) imply

for the benchmarked (consumption-adjusted) value Ĝπ
t the SDE

dĜπ
t = Ft(dV

π
t + χCtdt)−Gπ

t Ftθ
⊤
t dWt − (π⊤

t b
S
t )V

π
t Ftθtdt

= (π⊤
t b

S
t V̂

π
t − Ĝπ

t θ
⊤
t )dWt. (18)

This means that the benchmarked self-financing portfolio process is driftless and, therefore,

forms a local martingale. In addition, Ĝπ
t is nonnegative. Thus, again by Fatou’s Lemma,

Ĝπ is a supermartingale.

Note that benchmarked (consumption-adjusted) wealth processes may exist in our setting

that are strict supermartingales but not martingales. This means that these portfolios may

not be fair. However, it is interesting to further study those particular portfolios which are

fair.

Due to the classical Law of One Price, usually, the literature does not emphasize that

the investor cares about the minimal possible initial expense. Nevertheless, in our more

general setting, where several self-financing portfolios may exist that deliver the same payout,

this objective now appears as a reasonable component of the optimization. Lower initial

capital needed for a payout translates into extra capital that allows for higher consumption.

Therefore, we aim for consumption-savings profiles and associated wealth processes that

require minimal initial capital.

In the remainder we consider the optimization problems where the investor restricts

herself to fair consumption-savings portfolios in the sense of Definition 4, such that her

objective is to determine a process J = (Jt)t∈[0,T ] that solves, as in (5), the optimization

Jt = max
(π,C)

E

[∫ T

t

χf(Cs, Js, s)ds+ εB(V π
T )

∣∣∣∣At

]
, (19)

for all t ∈ [0, T ), now subject to fair and self-financing wealth dynamics (4).

The utility optimization problem (19) may be different from our initial utility optimiza-

tion (5), since cost minimization is not an explicit goal in (5) and so the investor may seem to

have opportunities to trade off its benefits against potential utility gains. Whenever needed,

we assume existence and uniqueness of stochastic differential utility in the sense of Duffie

and Epstein (1992a) over this restricted set of strategies.

Along the way, significant practical benefits become available. As we will see in the next

sections, the restriction to fair strategies permits us to proceed analogous to the well-known

martingale technique. Intuitively, the optimization problem (19) means that the investor

carries out a two-step optimization along the lines of the martingale technique: First, she
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looks for a fair optimal consumption profile for any given initial cost and then, in the second

step, ensures that the initial cost matches her initial wealth.

Under classical no-arbitrage assumptions, the pricing rule (7) is the risk-neutral pricing

rule and has been the prevailing one. As we will see later on, by applying formally risk-

neutral pricing to our more general setting (which is possible) one obtains a benchmarked

portfolio that is a local martingale. However, it may not be a martingale. In any case,

it would be a supermartingale and, when not a martingale, would be more expensive than

the respective martingale, the fair price. Real-world pricing according to (15) is minimum

pricing and yields fair consumption-adjusted wealth processes. The restrictive assumption

on the existence of an equivalent risk-neutral probability measure is, in our general setting,

no longer enforced and portfolios can be constructed with less expensive dynamic asset

allocation strategies than those obtained from formally applied risk-neutral pricing.

Minimum pricing (real-world pricing) is to be distinguished from risk-neutral pricing,

where a risk-neutral probability measure Q is assumed to exist in a probability space

(Ω,A,A, Q) s.t. savings account discounted price processes become martingales under the

assumed risk-neutral probability measure. Under the classical no-arbitrage paradigm it is

well-known that an SDF can be used to define the risk-neutral probability measure, see

Cochrane (2001). Risk-neutral and real-world pricing are equivalent under the existence of

an equivalent risk-neutral probability measure, see equation (10.4.5) in Platen and Heath

(2010). However, they differ in theory and in actual markets, see e.g. Baldeaux et al. (2015).

By formally applying risk-neutral pricing, which is currently mostly done in practice,

one simply ignores the possibility that the benchmarked savings account may be, in reality,

a strict local martingale, and, thus, a strict supermartingale. In such a case, the formally

obtained risk-neutral price would be usually more expensive than the minimum price which

is obtained via the real-world pricing formula (15).

An important question that arises in our optimization is the tradeability of the fair

optimal consumption-savings portfolio. The next sections will show that the fair portfolio

is tradeable once the SDF is tradeable. In summary, fair portfolio strategies encapsulate

already an important first optimization step that does not arise under classical assumptions,

where one formally applies risk-neutral pricing.

4 Optimal Benchmarked Portfolio Choice

The previous sections discuss the central role of the GP as benchmark or numéraire in pricing.

This section assumes real-world pricing to obtain minimum prices and uses the properties

derived to re-express the optimal wealth process (as well as the optimal consumption process)
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in terms of the GP and the baseline security.

Let us consider a budget-feasible, fair consumption-savings and terminal wealth plan and

postpone to a further discussion the issue, whether such a plan would be tradeable. The

problem then reduces to finding the optimal, budget-feasible plan, i.e. we look for processes

C and J , and a random variable V π
T that maximize the right-hand side in equation (19).

Real-world pricing tells us that the current benchmarked value of a consumption-savings

investment strategy (π,C) with benchmarked consumption-adjusted value process Ĝπ is

given by the conditional expectation

Ĝπ
t = E

[
Ĝπ
T

∣∣∣At

]
= E

[∫ T

0

χ
Cs
V GP
s

ds+
V π
T

V GP
T

∣∣∣∣At

]
.

Therefore, we have for the benchmarked portfolio value V̂ π
t =

V πt
V GPt

and the benchmarked

consumption Ĉt =
Ct
V GPt

the equality

V̂ π
t = E

[∫ T

t

χĈsds+ V̂ π
T

∣∣∣∣At

]
, (20)

t ∈ [0, T ]. Using a Lagrange multiplier λ to capture the initial budget constraint, we have

by (19) to maximize at the initial time t = 0 the following expression:

max
π,C

E

[∫ T

0

χf(Cs, Js, s)ds+ εB(V π
T )

]
− λ

(
E

[∫ T

0

χĈsds+ V̂ π
T

]
− V0

)
= max

π,C
E

[
χ

∫ T

0

(
f(Cs, Js, s)− λĈs

)
ds+ εB(V π

T )− λ
(
V̂ π
T − V0

)]
. (21)

Note that we move in (21) the constraint that V̂ π has to be fair, under a single, overarching

expectation. In some sense, if we are able to maximize the random variable inside the

expectation in (21), then we have a candidate for the optimal payout, and thus, a clue for

the optimal strategy.

To determine the optimal investment and consumption strategy, one is tempted to fix

a time s ∈ [0, T ] and then determine the optimal consumption level at that point in time.

With time-additive utility this approach finds the correct characterization of the consump-

tion strategy, see Pennacchi (2008). However, even with time-additive utility this approach

ignores that setting consumption at a time t affects the wealth to be invested going forward

in time and, therefore, does impact future consumption choices. With Epstein-Zin prefer-

ences (recursive utility) these choices are even more intertwined, since future consumption

recursively affects current utility levels in addition to consumption levels. To make such
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a calculation mathematically rigorous requires a suitably defined derivative of the entire

consumption path over the time interval [0, T ].

In a series of papers Darrel Duffie and coauthors looked into this problem, see Duffie

and Epstein (1992a) and Duffie and Skiadas (1994), and used the mathematical concept of

Gateaux-derivatives applied to consumption paths to show that these drive the SDF. Section

9.H in Duffie (2001) calculates the Gateaux-derivative explicitly for time-additive utility

and shows that the popular characterization of an SDF holds in this case. With stochastic

differential utility (Epstein-Zin preferences), Duffie and Skiadas (1994) characterize on pages

125-127 explicitly the SDF, see also Section 9.H together with Appendix F in Duffie (2001).

At any point in time their arguments allow us to derive from (21) in our more general setting

the following relations for the candidates of the optimal V ∗
T and C∗

s :

dB

dV
(V ∗

T ) =
λ

εV GP
T

, (22)

and, as long as χ = 1, for 0 ≤ s < T , and given Js one gets

Ds
∂f

∂C
(C∗

s , Js, s) =
λ

V GP
s

, (23)

where1

Ds = exp

(∫ s

0

∂f

∂J
(C∗

t , Jt, t)dt

)
. (24)

For simplicity, we write f ′(C, l, s) = ∂f
∂C

(C, l, s) and B′(V ) = dB
dV

(V ). Assumption 2

implies that both functions f ′ and B′ are invertible with respect to C > 0 and V > 0,

respectively, and we denote by f ′,−1(·, l, s) for given (l, s) and by B′,−1(·) their respective

inverse functions. This allows us to write the candidate for the optimal terminal wealth as

V ∗
T = B′,−1

(
λ

εV GP
T

)
, (25)

and the candidate for the optimal consumption at time s ∈ [0, T ] as

C∗
s = χf ′,−1

(
λ

DsV GP
s

, Js, s

)
. (26)

Note that the process D in (24) depends on the utility process J and on the optimal

1With recursive preferences, the process D captures the fact that marginal changes in consumption at any
time affect (recursively) the entire consumption path and lifetime utility. With time-additive preferences, it
can be shown that (23) simplifies to the usual formula, where marginal utility is proportional to an SDF.
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consumption process C∗. The key observation is here that the optimal consumption (26)

and the terminal wealth characterization in (25), as well as, the process D depend only on

the process J and on the GP.

At time t = 0, the investor starts with initial wealth V0 > 0. The Lagrange multiplier λ

must, therefore, solve equation (20) at time t = 0, using the optimal plan (25), (26). The

Inada conditions in Assumption 2 let us study the cases λ→ 0, and λ→ ∞. This shows us

that the right-hand side in (20) runs from ∞ to 0, which ensures the existence of λ.

The well-known martingale technique for time-additive utility, see, e.g. Section 12.4.2 in

Pennacchi (2008) or Section 4.4.3 in Cvitanić and Zapatero (2004), as well as its generaliza-

tion to recursive preferences using the utility gradient technique, see Section 9.H in Duffie

(2001), all assume classical no-arbitrage assumptions and end up with the key observation

that optimal consumption and terminal wealth can be represented in terms of the classical

SDF. Our derivations here generalize this insight in a practically important direction: The

SDF is the inverse of the tradeable GP, and our approach has the key advantage that we do

not request the restrictive no-arbitrage assumptions of classical finance theory. Furthermore,

in our approach the SDF is fully linked to tradeable securities, these are the GP and the

baseline security.

As we will show in the next section, these advantages are crucial from a practical point

of view, as they have important implications for implementing the optimal strategy and

ultimately for employing more realistic long term market models in managing risk than

available under classical assumptions.

Let us summarize our findings in (20)-(26) using (19) as follows:

Corollary 6 Assuming that the optimization problem (21) has a unique solution, then the

candidates for the benchmarked optimal consumption-savings process V̂ ∗ and for the indirect

utility process J are determined for 0 ≤ t ≤ T by the conditional expectations

V̂ ∗
t = E

[
χ

∫ T

t

f ′,−1

(
λ

DsV GP
s

, Js, s

)
1

V GP
s

ds+B′,−1

(
λ

εV GP
T

)
1

V GP
T

∣∣∣∣At

]
, (27)

and

Jt = E

[
χ

∫ T

t

f

(
f ′,−1

(
λ

DsV GP
s

, Js, s

)
, Js, s

)
ds+ εB

(
B′,−1

(
λ

εV GP
T

))∣∣∣∣At

]
, (28)

respectively.

Note that the value on the right hand side of the benchmarked optimal consumption-savings

process assumes neither the existence of an equivalent risk-neutral probability measure nor
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market completeness. The key assumption made is the existence of the GP, which needs

trivially to be satisfied to avoid economically meaningful arbitrage.

5 Trading the Optimal Consumption-Savings Process

The previous section found that the optimal consumption decision (at any time) and the

terminal wealth depend ultimately only on the process characterizing the GP in its given

denomination, see equations (25) and (26). Therefore, for further analysis, this section

discusses modeling that process.

Under the classical no-arbitrage paradigm, the vector of state variable processes, which

models the entire market dynamics, determines, in general, also the optimal solution. Due

to the enormous number of state variables that characterize the entire market dynamics,

this is not a realistic way of implementing optimal strategies in practice and would leave

our previous statements on a purely theoretical level. We have to face, in practice, the

impossibility to model and estimate sufficiently accurate the dynamics of all components

of the entire global market to implement useful optimal portfolios. This impossibility has

been explained, e.g. in DeMiguel et al. (2009) for the closely related task of sample based

mean-variance portfolio optimization, and is also argued in Kan et al. (2016), Kan and Zhou

(2007), and Okhrin and Schmid (2006).

Instead of aiming for an extremely complex, purely theoretical model for the entire market

with unresolvable modeling and parameter estimation challenges, we propose in this paper to

exploit the above clarified central role of the GP for the characterization and construction of

optimal portfolios. Therefore, it turns out to be extremely useful that proxies of the GP for a

given investment universe can be constructed, as demonstrated in Platen and Rendek (2012),

and Platen and Rendek (2017). This makes it then practically feasible to approximate well

the targeted optimal portfolios and consumption processes.

5.1 Multi-Dimensional Markovian Models

Multi-dimensional, continuous Markovian market dynamics appear to be the class of market

models that have been implemented most successfully in the context of utility maximization

and derivative pricing. For obtaining tractable optimal strategies we make, therefore, the

following assumption:

Assumption 7 The value V GP
t = V GP (t,M1

t , . . . ,M
n
t ) of the discounted GP is a function

of a multi-dimensional Markov process M = {Mt = (M1
t , . . . ,M

n
t )

⊤, t ∈ [0, T ]}. The vector
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process M satisfies the SDE

dMt = µM(t,Mt)dt+ σM(t,Mt)dWt, (29)

where µM and σM are suitable functions of time t and the Markovian state vector Mt.

As discussed above, our analysis draws our attention to properties of the GP process. It

is important to stress that assumption 7 requires the drift vector and volatility matrix to

be functions of time and of the vector process M , only. Although state variables may drive

the drift and volatility of primary securities, these assumptions mean that no state variable

drives the vector process M . In Section 7 we will discuss a model that has this convenient

property and matches empirically well the observed GP dynamics.

We assume from now on that we have a tradeable proxy of the GP, which we then identify

with the GP for the purposes of this paper. For an example of a construction of a proxy for

the GP of the global equity market we refer to Platen and Rendek (2012) and for the GP of

developed equity markets to Platen and Rendek (2017). Ultimately, we will show that the

optimal consumption-savings process and investment strategy become tradeable in terms of

suitable multiple funds and the baseline risk-free security, along the lines of well-established

multiple-fund theorems, see e.g. Merton (1971) or Pennacchi (2008). Our analysis in Section

4 postpones the issue of tradeability of optimal solutions but our discussion here now confirms

the feasibility of our approach also in this respect.

The characterization of the bequest B and the consumption C in equations (25) and

(26) tells us that these are driven by our vector Markov process. Furthermore, due to the

characterization in equation (24), the process D can be interpreted as a component of our

vector Markov process. Finally, together with (28) and Assumption 7, this implies that the

recursive utility J is interpretable as a component of our vector Markov process. Based

on equations (23), (27) and (28) we then conclude that the optimal wealth process V ∗,

the recursive utility process J , the consumption process C∗ and the process D are all fully

characterized by the current time t together with the current values of the components of

the Markov process M .

This allows us to introduce the optimal value (function) V ∗
t = V ∗(t,Mt) and the life-time

utility (function) Jt = J(t,Mt) through equations (27) and (28), as well as the function
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Dt = D(t,Mt) through equation (24). This means, for 0 ≤ t ≤ T we have

V ∗(t,m) = V GP (t,m)E

[
χ

∫ T

t

C∗(s,Ms)

V GP (s,Ms)
ds+

V ∗(T,MT )

V GP (T,MT )

∣∣∣∣∣Mt = m

]
, (30)

J(t,m) = E

[
χ

∫ T

t

f (C∗(s,Ms), J(s,Ms), s) ds+ εB(V ∗
T )

∣∣∣∣∣Mt = m

]
, (31)

where

V ∗
T = V ∗(T,MT ) = B′,−1

(
λ

εV GP (T,MT )

)
, (32)

and, for 0 ≤ s ≤ T we get

C∗(s,Ms) = χf ′,−1

(
λ

D(s,Ms)V GP (s,Ms)
, J(s,Ms), s

)
. (33)

Assuming sufficient differentiability of V ∗(·, ·), an application of Itô’s lemma yields the

SDE for V ∗
t = V ∗(t,Mt) = V ∗(t,M1

t , . . . ,M
n
t ) in the form

dV ∗
t =

(
∂V ∗

∂t
+

1

2

n∑
i,j=1

σMiσMj
∂2V ∗

∂mi∂mj

)
dt+

n∑
i=1

∂V ∗

∂mi

dM i
t . (34)

The terms in front of dM i
t in equation (34) yield by standard hedging arguments the following

insight:

Corollary 8 (Multiple Fund Separation) Assume that all components M i, i = 1, . . . , n

of M are constructed in such a way that they can be traded, giving rise to n risky non-

redundant funds plus the baseline security. Then the investor can implement her optimal

investment strategy (and fund her consumption-savings profile) by holding at time t

∂V ∗

∂mi

(35)

units of the i-th fund M i
t , i = 1, . . . , n, and invest the remainder of her wealth in the given

baseline security, the locally risk-free security.

Our proof of this result is mathematically similar to those of prior multiple fund sep-

aration theorems in the consumption-savings literature, see e.g. Pennacchi (2008). This

literature suggests that additional state-variables give rise to additional funds that play a

necessary role in optimal investing. Our results, however, clarify this by placing the em-
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phasis fully on the GP denominated in the baseline security and, thus, on the components

of M that determine its dynamics. Only these components are needed for constructing an

optimal investment portfolio and not the many other quantities that characterize the entire

financial market. Furthermore, we allow a significantly richer modeling world for capturing

more realistically the long-term dynamics of the GP than classical finance theory permits.

We request only the existence of the GP and make no longer the additional assumption on

the existence of an equivalent risk-neutral probability measure. Since we have discounted

our securities by the locally risk-free baseline security, we have to model also its dynamics

in our Markovian system, when targeting payoffs that refer to currency units or inflation

adjusted payouts, which is a standard task.

It is important to note that in our approach one does not have to care about market

incompleteness, i.e. about any additional factors that may be needed to complete the market.

All that is needed are the n funds that arise from the n components ofMt. These characterize

V ∗
t and no other funds are necessary. This reduces the task of portfolio optimization to its

core and clarifies the natural inputs that determine the optimal strategy with the GP as

central building block.

In addition, our clarification simplifies considerably practical portfolio construction, in

particular, when a proxy of the GP is employed. The number of factors needed to model the

GP is significantly smaller than the number of state variables characterizing an entire global

market model. This becomes most evident, when the uncertainties driving the GP can be

captured in a single Brownian motion. In the case of the equity market, the GP is then

driven by one source of uncertainty, called the non-diversifiable (systematic) uncertainty.

Despite its simplicity, this appears to be a rather realistic case, as forthcoming research will

reveal. We will elaborate on a stylized version of this case in Section 7 and then show how

this insight simplifies practically relevant applications.

The reader accustomed with optimal investing may be suprised to see that, according to

Corollary 8, so-called intertemporal hedge demands do not arise but that only positioning

in the terms driving the GP matters. Two important observations must be made: First, we

note that it may well be that intertemporal hedge demand show up in other representations

of demand that look at positioning in the primary securities instead of positioning in (the

driving forces of) the GP. Most important, we note that Assumption 7 does not permit the

Markov process M to be driven by state variables that are not spanned by the primary

securities. When the vector Markovian process M would be driven by unspanned state

variables, on might well obtain some intertemporal hedge demand. While one can easily

imagine situations where intertemporal hedge demands apear, the scope of this paper is to

focus on practical feasibility and point out practically relevant situations where the analysis
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can be simplified. As such we are not interested in analyzing situations itself that lead to

more complex dynamic asset allocation.

5.2 Scalar Markovian Growth Optimal Portfolio

A particularly important case results when the GP forms a scalar Markov process, that is

when we have n = 1 and can aggregate its driving uncertainty in a scalar Brownian motion

W . Then, we can replace Mt by the GP value V GP
t at time t and write V ∗

t as a function of

the current GP value, i.e. V ∗ = V ∗(t, V GP
t ).

Assuming sufficient differentiability of the function V ∗, an application of Itô’s lemma

yields the SDE for V ∗
t = V ∗(t, V GP

t ). We then obtain by equation (13) that

dV ∗
t =

(
∂V ∗

∂t
+

1

2
θ2t (V

GP
t )2

∂2V ∗

∂v2

)
dt+

∂V ∗

∂v
dV GP

t (36)

= V ∗
t (a

V
t dt+ bVt dWt), (37)

where

aVt V
∗
t =

∂V ∗

∂t
+

1

2
θ2t
(
V GP
t

)2 ∂2V ∗

∂v2
+ θ2tV

GP
t

∂V ∗

∂v
, (38)

and bVt V
∗
t = θtV

GP
t

∂V ∗

∂v
. (39)

The term in front of dV GP
t in equation (36) reveals the following result:

Theorem 9 (Two-Fund Separation) When the discounted GP forms a scalar Markov

process, the investor can implement her optimal investment strategy (and fund her optimal

consumption-savings profile) by holding at all times

ωt =
∂V ∗

∂v
(t, V GP

t ) (40)

units of the (risky) GP, and invest the remainder of her wealth in the given (riskless) baseline

security.

It is important to note that in this scalar Markovian case the optimal portfolio can be

fully characterized through investment in the GP and the baseline security. This may come

as a surprise, as the reader may be accustomed to wealth processes depending on various

(untraded or additional) state variables. Here, however, there are no untraded or additional

state variables that play any role in the optimal solution, as long as the baseline security

is traded, which we assume here. Keeping in mind that our modeling is more general than
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modeling under classical no-arbitrage assumptions, Theorem 9 generalizes various earlier

results in the literature. For example, Pennacchi (2008) reports in his equation (12.70) the

wealth weights with unspanned state variables. His equation coincides formally with ours,

when all state variables are traded. Yet, our additional observations here are that the scalar

Markovianity of the GP simplifies the strategy significantly to an investment into two funds.

Note that a similar, slightly more general two-fund separation arises when only one Brownian

motion drives a multi-component Markovian SDE that determines the GP as that of one

of its components. In this case the equations (36)-(39) become slightly more general when

applying the Itô formula to V ∗(t,Mt).

6 The Optimal Portfolio Value

The previous section expresses the investment strategy through first-order derivatives of the

wealth function, i.e. as a function of the optimal portfolio value. This provides the important

insight that it is sufficient to focus primarily on trading the GP and the baseline security.

In practical applications this results in a crucial simplification when a proxy of the GP is

employed. For potential further theoretical insights but mostly for practical implementations

it remains to characterize further the process V ∗. To simplify our exposition, we focus now

on the case of a scalar Markovian GP, discussed in Subsection 5.2. The handling of more

general Markovian multi-component models for characterizing the function V ∗(t,Mt) is then

straightforward.

The first subsection explains how the general case should be addressed. The following two

subsections explain how common preference specifications are covered within our preference

framework of Subsection 2.2. In particular, they characterize the investment strategies that

result for a scalar Markovian GP dynamics.

6.1 The General Case

The consumption adjusted optimal wealth process G∗
t = V ∗

t +
∫ t
0
C∗
sds satisfies by equation

(37) the SDE dG∗
t = (V ∗

t a
V
t + C∗

t )dt + V ∗
t b

V
t dWt. This process, when benchmarked, that is

Ĝt =
G∗
t

V GPt
, fulfills the SDE

dĜt = d

(
G∗
t

1

V GP
t

)
= G∗

td

(
1

V GP
t

)
+

1

V GP
t

dG∗
t + d < G∗,

1

V GP
>t

=
1

V GP
t

(
aVt V

∗
t dt+ χC∗

t − θtb
V
t V

∗
t

)
dt+

(
V ∗
t

V GP
t

bVt − G∗
t

V GP
t

θt

)
dWt.
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As mentioned earlier, the process Ĝ must be a martingale. Consequently, we must have

V ∗
t

(
aVt − θtb

V
t

)
+ χC∗

t = 0. (41)

Together with equations (38) and (39) this allows us to formulate a partial differential

equation (PDE) that characterizes V ∗(t, v) as follows:

∂V ∗

∂t
+

1

2
θ2t v

2∂
2V ∗

∂v2
+ χC∗(t, v) = 0. (42)

Furthermore, we have for V ∗
t by (13) and (40) the SDE

dV ∗
t =

(
θ2tV

GP
t

∂V ∗

∂v
− χC∗

t

)
dt+ θtV

GP
t

∂V ∗

∂v
dWt = ωtdV

GP
t − C∗

t dt, (43)

see Theorem 9. Since C∗ depends on J∗, see equation (33), in general, the PDE (42) needs

to be solved jointly with the Hamilton-Jacobi-Bellman (HJB) PDE for J . Equation (3) of

Section 9.A in Duffie (2001) reports the HJB equation for a controlled process given in his

equation (1). In our setup, equation (42) specifies the controlled process and we find that

the HJB equation reads

max
C∗(t,v)

{
∂J∗

∂t
+

(
θ2t
∂V ∗

∂v
v − χC∗

t

)
∂J∗

∂v
+

1

2
θ2t v

2∂
2J∗

∂v2
+ χf (C∗, J, t)

}
= 0. (44)

When χ = 1 (consumption-savings problem), this means that (formally) the first-order

condition yields

− ∂J

∂V ∗ + f ′(C∗, J, t) = 0, (45)

where

C∗(t, v) = f ′,−1

(
∂J

∂V ∗ , J, t

)
. (46)

Using this characterization together with equations (42) and (44) we have to solve the system

of PDEs

∂V ∗

∂t
+

1

2
θ2t v

2∂
2V ∗

∂v2
+ χf ′,−1

(
∂J∗

∂V ∗ , J
∗, t

)
= 0, (47)

∂J∗

∂t
+

1

2
θ2t v

2 ∂
2J∗

∂V ∗2 + χf

(
f ′,−1

(
∂J∗

∂V ∗ , J
∗, t

)
, J∗, t

)
+

(
θ2t
∂V ∗

∂v
v − χf ′,−1

(
∂J∗

∂V ∗ , J
∗, t

))
∂J∗

∂V ∗ = 0. (48)
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Based on equation (32) and (31) it remains to satisfy also the terminal boundary conditions

V ∗(T, v) = B′,−1

(
λ

εv

)
and J∗(T, v) = εB

(
B′,−1

(
λ

εv

))
, (49)

respectively. Finally, to assure the martingale property for Ĝ we impose the following spatial

boundary conditions: For v → ∞ we require V ∗(t, v) → ∞ and for v → 0 we require

V ∗(t, v) → 0.

Note that the solution depends on the Lagrange multiplier λ, i.e. the solution to the

PDE (42) is characterized by λ. This parameter should be set to fulfill the initial budget

constraint, see our previous discussion in Section 4. Since the characterization of the optimal

portfolio value depends strongly on the choice of f , the next subsections discuss particular

cases.

6.2 (Time-additive) Preferences over Consumption

In (time-additive) consumption savings problems (χ = 1) with a given utility function u

and a rate of time-preference δ > 0 we set2 f(c, l, t) = e−δtu(c). We then obtain D = 1 by

equation (24) and Ds
∂f
∂c

= e−δsu′(c) for the term on the left-hand side in equation (23).

The literature often illustrates time-separable consumption-savings problems with CRRA

preferences. Using a (constant) rate of time-preference δ > 0 and a risk-aversion coefficient

0 < γ, one looks typically at B : x 7→ e−δTx1−γ/(1− γ) and f : (c, t) 7→ e−δtc1−γ/(1− γ) for

γ ̸= 1. For γ = 1 the functions are analogous, replacing the power functions by the natural

logarithm and leading to B : x 7→ e−δT ln(x) and f : (c, t) 7→ e−δt ln(c). Our preference

specification covers these cases of CRRA preferences and several more general cases that

fulfill Assumption 2.

For further illustration throughout this subsection we discuss exclusively the case of

time-additive utility where the investor has CRRA preferences, as described above. We then

calculate f ′,−1(c, l, s) = (e−δsc)−1/γ, B′,−1(x) = (eδTx)−1/γ, which gives

C∗
s = (eδsλ)−1/γ(V GP

s )1/γ, for 0 ≤ s < T, and V ∗
T = ε1/γ(eδTλ)−1/γ

(
V GP
T

)1/γ
. (50)

2Alternatively, but more in line with the literature, one may consider the aggregator as f(c, l, t) = u(c)−δl
to also find that Ds

∂f
∂c = e−δsu′(c). The literature on stochastic differential utility shows that this functional

form of the aggregator leads to a J process that is equivalent in terms of preference ranking to the common

specification Jt = maxπ,C E[
∫ T

t
exp(−δ(T − s))u(Cs)ds|At], see Duffie and Epstein (1992a).
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This yields

V ∗(t, v)

v
=

1

λ1/γ

∫ T

t

e−
δ
γ
sE
[
(V GP

s )(1/γ)−1
∣∣V GP

t = v
]
ds

+
ε1/γe−

δ
γ
T

λ1/γ
E
[
(V GP

T )(1/γ)−1
∣∣V GP

t = v
]
.

We could characterize the consumption-wealth ratio C∗
t /V

∗(t, v), but refrain from doing

so, since our focus is on investment strategies. The initial budget equation V0 = V ∗
0 =

V ∗(0, V GP
0 ) with V GP

0 = 1 sets λ, which in turn gives the benchmarked portfolio value as

V ∗(t, v)

v
= V0

E
[
χ
∫ T
t
e−(δ/γ)s(V GP

s )1/γ−1ds+ εe−(δ/γ)T (V GP
T )1/γ−1

∣∣∣V GP
t = v

]
E
[
χ
∫ T
0
e−(δ/γ)s(V GP

s )1/γ−1ds+ εe−(δ/γ)T (V GP
T )1/γ−1

] (51)

= V0v
(1/γ)−1

E

[
χ
∫ T
t
e−(δ/γ)s

(
V GPs

v

)1/γ−1

ds+ εe−(δ/γ)T
(
V GPT

v

)1/γ−1
∣∣∣∣V GP

t = v

]
E
[
χ
∫ T
0
e−(δ/γ)s(V GP

s )1/γ−1ds+ εe−(δ/γ)T (V GP
T )1/γ−1

] .

It is important to note that the fraction on the right-hand side of this representation does

not depend on v because of the assumed Markov property for the GP. Taking the derivative

shows that
∂V ∗(t, v)

∂v
=

1

γ

V ∗(t, v)

v
.

Recall from Theorem 9 that this gives the number of units of the GP to be held.

Specifying the stochastic dynamics of the GP, we could calculate for t ≤ s ≤ T the

expectations E[(V GP
s )1/γ−1|V GP

t = v] and determine the optimal value function V ∗. This

would then characterize the optimal investment strategy through Theorem 9. We will discuss

this further in the next section, where we consider several dynamics for the GP.

A particularly convenient case is when the optimal value function does not depend on

expectations E[(V GP
s )1/γ−1|V GP

t = v]: This corresponds to the case of a log investor (γ = 1).

Then, the above equations simplify to

V ∗
t = V0

εδ + e−δ(t−T ) − 1

εδ + eδT − 1
V GP
t . (52)

Additional calculations would recover equations, shown e.g. in Pennacchi (2008).

Equation (52) shows that the optimal value process grows similarly to the GP, where a

time-dependent function determines the effect of consumption. This suggests by equation

(40) that the investor does not hold all her wealth in the GP. We then calculate ∂V ∗

∂v
=

V ∗
t

v
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and find based on equations (14) and (39) for a scalar Markovian GP that the investor holds

at time t ∈ [0, T ]:

V0
εδ + e−δ(t−T ) − 1

εδ + eδT − 1

units of the GP and the remainder in the locally riskless asset. At the terminal time T the

bequest amounts to V ∗
T = V GP

T V0
εδ

εδ+eδT−1
.

Note that as we increase T , the log-investor holds more and more of her wealth in the GP;

taking the limit T → ∞ we find that she holds all her wealth in the GP, which (formally)

matches the earlier mentioned insight on the Kelly portfolio.

We emphasize that in the case of a log-investor the optimal strategy is independent of

the dynamics of the GP, which is an extremely important observation because the log-utility

maximizing portfolio is the one that in the long run generates almost surely the highest value,

see Theorem 10.5.1 in Platen and Heath (2010). Thus, an investor who prefers more for less

and has an extremely long time horizon is naturally behaving as a log-investor. This type of

investor is typically also deeply concerned about the sustainability of our consumption and

economic activity, which has become more and more the focus of attention.

6.3 Preferences over Terminal Wealth

In asset allocation problems (χ = 0) it is customary to introduce a rate of time-preference δ >

0, a risk-aversion coefficient γ > 0, and set f = 0, as well as B : x 7→ exp(−δT )x1−γ/(1− γ)

for γ ̸= 1 and B : x 7→ exp(−δT ) ln(x) for γ = 1. Our preference specification covers these

and several more general cases of preferences that fulfill Assumption 2.

Preferences over terminal wealth are a special case of our analysis in the previous sub-

section. For completeness and comparison with the literature, we report the results from

equations (50), (51) and (6.2):

V ∗
T = ε1/γ(eδTλ)−1/γ

(
V GP
T

)1/γ
(53)

V ∗(t, v)

v
= V0v

(1/γ)−1

E

[(
V GPT

v

)(1/γ)−1
∣∣∣∣V GP

t = v

]
E[(V GP

T )(1/γ)−1]
, (54)

∂V ∗(t, v)

∂v
=

1

γ

V ∗(t, v)

v
. (55)

Recall from Theorem 9 that the last term denotes the number of units to be held in the GP.

(These results can also be calculated directly, setting f = 0 such that D = 1 according to

equation (24), and calculating B′,−1(x) = (eδTx)−1/γ.)

These equations simplify considerably when we assume logarithmic preferences, that is
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γ = 1. In that case we find
V ∗(t, v)

v
= V0, (56)

i.e. the investor holds exclusively the GP, as mentioned already in Subsection 3.3. This

is the case where for T → ∞ one obtains almost surely the highest portfolio value. More

precisely, on obtains the largest long-term growth rate, that is

lim
T→∞

ln

(
V GP
T

V0

)
≥ lim

T→∞
ln

(
V ∗(T, V GP

T )

V0

)
P -almost surely, by the GP: This key property of the GP makes it so special among all other

optimal portfolios and explains intuitively its central role in portfolio optimization.

7 An Empirical Evaluation

The previous Sections introduced our approach based on several assumptions, in particular

continuous trading, tradeability of the SDF and the Markov property of its process. This

allowed us to come up with convenient consumption-savings and asset allocation strategies

that should lead to superior wealth levels. Ultimately, however, it is an empirical question

whether our approach does lead to superior wealth levels when implemented in practice.

This Section aims to provide support for this.

We study an investor that wants to invest in the US stock market over the long run.

The S&P 500 total return index is readily available for the time 1925 to today, even a

reconstructed index is provided by R. Shiller for the period 1871 to 1925. Throughout this

Section we focus on subperiods of the time from 1925 to 2017 and identify the GP with the

S&P 500.

As noted at various stages throughout this paper, preferences with constant relative

risk aversion (CRRA) are a common assumptions in financial modeling. Therefore, we also

adopt these for empirical evaluation. For simplicity we evaluate terminal wealth, i.e. we

set f = 0, χ = 0, ε = 1 and B : x 7→ exp(−δT )x1−γ/(1 − γ) for γ ̸= 1, respectively

B : x 7→ exp(−δT ) ln(x) for γ = 1. As usual γ refers to the (relative) risk aversion coefficient.

We are then in the asset allocation setup of subsection 6.3 and note that the investment

strategy is well-specified through the number

∂V ∗(t, v)

∂v
=

1

γ

V ∗(t, v)

v

of units to hold in the S&P 500, see equation (54). For implementations it thus remains
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to determine the value V ∗ throughout time and states, which requires us to calculate the

(conditional) expectations in equation (54). Throughout we present results only for a relative

risk aversion coefficient γ = 3; this is a popular choice in finance.

The process dynamics of the S&P 500 has been extensively researched and many process

specifications in continuous-time have been studied. Throughout this paper we are partic-

ularly interested in Markovian processes for the GP with a single Brownian motion. An

illustrative and rather realistic case arises when the GP of the stock market is assumed to

follow the dynamics of the minimal market model (MMM) of Platen (2001), see also Chapter

13 in Platen and Heath (2010). When using the S&P 500 total return index as a proxy for

the GP for the period 1871 to 2017, we obtain α0 = 0.1828 and η = 0.0520. This allows

us to calculate calculate above mentioned expectations E
[(
V GP
T

)(1/γ)−1
∣∣∣V GP

t = v
]
for any

time t. For completeness, details on the MMM and calculations are provided in Appendix

B.2.

We stress that we adopt the MMM process dynamics only to allow us the calculation

of the (conditional) expectations in equation (54) and the associated portfolio holdings in

the S&P 500. Any other Markovian process characterization for the GP would also allow us

to proceed analogously. Clearly, the better we capture the stochastic dynamics of the S&P

500, the better our strategy will perform in implementation, however the task of finding the

appropriate description is beyond the scope of this paper.

Figure 1 presents the evolution of wealth for an investor starting with initial wealth $1

from 12/1925 to 1/2015 (violet line) and monthly rebalancing of her portfolio. Her wealth

would have grown considerably and increased to approximately $645, such that we plot

wealth on a log scale for easier analysis. To put this into perspective, let us compare this

with three alternative strategies. The first is the popular 60/40 strategy for the long run,

which invests at all times 60% (40%) of her current wealth in the S&P 500 (the risk-free

security). We plot in figure 1 the wealth of our investor following a 60/40 strategy as a red

line. Initially, our strategy and the 60/40 strategy follow one another closely, but starting

in the 1980‘s our strategy outperfoms the 60/40 strategy. This confirms our strategy which

is intended for the long run.

A second comparison is with a monthly rebalancing investment strategy of a investor with

mean-variance preferences. It is well-known that her portfolio weight in the risky asset (here

the S&P 500) is µt/(σ
2
tA), where µt, σt denotes the conditional expectation and standard

deviation of excess returns over the time period under consideration, as well as A denotes her

risk aversion parameter. A straightforward Taylor approximation shows that (in such a first

approximation) the CRRA preferences with risk-aversion parameter γ = 3 the risk-aversion

of our mean-variance investor should be set A = 2γ = 6. We estimate the unconditional
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Figure 1: Wealth dynamics for different investment strategies.

expectation and standard deviation of monthly S&P 5000 over the time period and find

µ = 0.0048, σ = 0.0017. Given the well-known difficulties to implement the mean-variance

approach conditionally we adopt these values and implement the mean-variance strategy

unconditionally. We plot in figure 1 the wealth of our investor following the associated

mean-variance strategy as a yellow line. Wit the exception of the period up to end of the

1940’s, the mean-variance strategy outperforms our strategy and underperforms the 60/40

strategy. But our focus is on the long run and here we see that the mean-variance strategy

underperforms both our strategy and the 60/40 strategy.

A final last comparison is made with the strategy of investing exclusively in the risk-free

security. We plot in figure 1 the wealth of our investor following such strategy as a blue line.

As expected, with the exception of the great depression period, this strategy underperfoms

all other strategies that we studied above. Clearly, it is not a recommended long term

investment strategy.

So far we considered only the situation of an investor that set up her portfolio in 1925.

However, it is well known that the performance of investment strategies depends on the

starting date and the time horizon of the investor under consideration. Therefore, for com-

pleteness we do now investigate how our approach fares against the 60/40 strategy and the

mean-variance strategy for different start dates and different time horizons (equivalently
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end year

start
year 1935 1945 1955 1965 1975 1985 1995 2005 2015

Panel (a): Optimal Strategy

1925 1.4558 1.8159 3.9252 9.4522 14.5106 54.0422 185.4094 372.4709 645.1950
1935 1.1926 2.3215 5.2904 8.2041 29.6918 99.1586 197.5899 340.7004
1945 1.7655 3.7884 5.9432 20.8018 67.1838 132.4785 227.0622
1955 1.8097 2.9427 9.2377 26.2874 49.5946 82.7845
1965 1.6695 4.8120 12.0963 21.6761 34.9976
1975 2.9340 7.5846 13.7611 22.4033
1985 2.3666 4.1214 6.5242
1995 1.6345 2.4674
2005 1.4761
2015

Panel (b): 60/40 Strategy

1925 1.6891 2.2470 4.6870 9.7744 15.9909 52.9878 147.5005 267.9764 430.6718
1935 1.3303 2.7748 5.7867 9.4670 31.3701 87.3240 158.6487 254.9684
1945 2.0859 4.3500 7.1166 23.5816 65.6434 119.2599 191.6656
1955 2.0854 3.4117 11.3052 31.4700 57.1742 91.8862
1965 1.6360 5.4211 15.0905 27.4161 44.0611
1975 3.3136 9.2240 16.7581 26.9323
1985 2.7837 5.0573 8.1278
1995 1.8168 2.9198
2005 1.6071

Panel (c): Mean-variance Strategy

1925 1.4346 1.7769 3.9845 10.0054 12.0157 39.5365 107.2100 175.3230 257.2734
1935 1.2989 2.7891 5.7107 7.3159 27.7153 73.7673 119.3921 192.6267
1945 2.0610 4.1853 5.6807 20.6251 54.4873 88.7298 142.0841
1955 1.9377 3.0152 9.7403 24.5575 39.8849 62.0339
1965 1.7029 5.0673 12.2600 19.9116 30.3380
1975 3.0845 7.7456 12.7960 19.8248
1985 2.4715 4.1097 6.3147
1995 1.6818 2.5571
2005 1.5200

Table 1: Total return varying start and end date.

ending year of the respective portfolio strategy). Table 1 presents the results for the three

strategies in three separate Panels. Note that running through the respective diagonals, the

reader can easily evaluate results for time horizons from 10 to 90 years in 10 year intervals.
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Table 1 reinforces our earlier conclusions based on Figure 1. It shows that our strategy

outperforms all other strategies over the long run. In particular, it is better than the other

strategies as long as the time horizon is longer than 30-40 years.

8 Conclusion

This paper has studied investing for the long run with a particular focus on practical as-

pects. This has lead us introduce a stochastic discount factor (SDF) that is more general

than the common one. We have stressed the importance of tradeability and identified it

as the inverse of the Growth Optimal Portfolio (GP). Using this SDF we have proceeded

analogous the martingale technique and characterized the optimal consumption-savings and

investment strategy via the SDF. Due to the before-mentioned tradeability this must be

tradeable the optimal strategy must be tradeable itself. This has turned our attention to

stochastic process properties of the GP and show that fund separation theorems hold as long

as the GP is Markovian. Therein, the fund holdings are characterized via partial derivatives

of the investor’s value function. Finally, we evaluated our strategy empirically by compar-

ing it with the popular 60/40 long term investment strategy and with that of a short-term

mean-variance investor. We found that our strategy beats these over the long run.

Appendix: Additional Material

A Recursive Epstein-Zin Preferences

Our setup allows us also to study consumption-savings problems (χ = 1) with preference

structures that are more general than time-separable preferences, so-called recursive pref-

erences. The function f is called the (normalized) aggregator of current consumption and

continuation utility. A popular form of recursive preferences are the so-called Epstein-Zin

preferences, introduced by Epstein and Zin (1989) based on the Kreps-Porteus preference

specification. We now discuss these in detail.

A.1 The Aggregator

To describe Epstein-Zin preferences we introduce the, so-called, elasticity of intertemporal

substitution parameter ψ > 0, the rate of time-preference δ > 0, as well as, a risk-aversion

coefficient γ, 0 < γ, γ ̸= 1. We then define a time-independent function f for strictly positive
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c > 0 and for strictly positive l > 0 (strictly negative l < 0) when γ < 1 (when γ > 1):

f(c, l) = δ
1− γ

1− 1
ψ

l

( c

((1− γ)l)
1

1−γ

)1− 1
ψ

− 1

 for ψ ̸= 1, (A-1)

f(c, l) = δ(1− γ)l

(
ln(c)− 1

1− γ
ln ((1− γ)l)

)
for ψ = 1. (A-2)

Leaving aside the multiplicative term in ε, our optimization problem yields then the

Duffie and Epstein (1992a) parametrization of a price taking agent with stochastic differential

utility derived from lifetime consumption. This characterizes also a continuous-time version

of the Epstein and Zin (1989) preferences that permit separation of risk aversion from the

intertemporal rate of substitution. Throughout the current paper, we do allow explicitly for

a bequest function εB(V π
T ). Similarly to Liu (2007), the parameter ε > 0 allows us to adjust

the relative importance of bequest and lifetime consumption.

Setting ψ = 1/γ in equation (A-1) reduces the above recursive utility consumption-

savings problem to a consumption savings problem with time-separable CRRA preferences

and (relative) risk aversion coefficient γ. This restriction has been imposed in the literature

to compare results with those of the, so-called, Merton consumption-savings problem, see

Merton (1971).

To see that the aggregator function f in equations (A-1) and (A-2) fulfills the conditions

in Assumption 2 we note first that the function f is twice differentiable on R+. Taking

derivatives based on equation (A-1) (ψ ̸= 1) and based on equation (A-2) (ψ = 1) we obtain:

∂f

∂c
= δ ((1− γ)l)

1
ψ

−γ
1−γ c−

1
ψ > 0, and

∂2f

∂c2
= − 1

ψc

∂f

∂c
< 0. (A-3)

Based on this representation it is straightforward to check the Inada conditions. We note

that Duffie and Lions (1992) and Schroder and Skiadas (1999) provide conditions and proofs

for existence and uniqueness of lifetime utility J .

A.2 Optimal Wealth and Consumption-savings Decision

For further illustration throughout this subsection we use the bequest function B(x) =

e−δTx1−γ/(1 − γ) for γ ̸= 1 and B(x) = e−δT ln(x) for γ = 1. Equations (A-3) provide the

first-order derivatives of the aggregator f that then allows us to derive the inverse w.r.t.

consumption. We have f ′,−1(x, l, s) = δψ ((1− γ)l)
1−γψ
1−γ x−ψ and B′,−1(x) = e−δT/x. This
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gives for 0 ≤ s < T the optimal consumption

C∗
s = δψ ((1− γ)Js)

1−γψ
1−γ λ−ψ(DsV

GP
s )ψ, (A-4)

and terminal value

V ∗
T = e−δT

( ε
λ
V GP
T

)1/γ
. (A-5)

It allows us to calculate the optimal benchmarked portfolio value function defined in equation

(30) as:

V ∗(t, v)

v
(A-6)

= E

[∫ T

t

((1− γ)Js)
1−γψ
1−γ

(
δDs

λ

)ψ
(V GP

s )ψ−1ds+ e−δT
( ε
λ

) 1
γ
(V GP

T )
1
γ
−1

∣∣∣∣∣V GP
t = v

]
.

The Lagrange multiplier λ follows from solving the initial budget equation V0 = V ∗
0 =

V ∗(0, F0). This provides a full characterization of the optimal value process.

If we assume the intertemporal elasticity of substitution as ψ = 1/γ, then we have

1 − γψ = 0 such that ((1− γ)Js)
1−γψ
1−γ = 1 and the process J does no longer play a role in

equation (A-6). We are then back in the representation presented in the previous subsection

with the value function (51). This is as expected, since it is well-known that the case ψ = 1/γ

corresponds to time-additive CRRA preferences.

The case without bequest (ε = 0) allows us to further simplify this result. In that case

we can factor out δψλ−ψ(1−γ)(1−γψ)/(1−γ) and using V0 = V ∗(0, V GP
0 ) we find based on (A-6)

that at all times 0 ≤ t ≤ T one has

V ∗(t, v) = V0v

E

[∫ T
t
J

1−γψ
1−γ
s Dψ

s (V
GP
s )ψ−1ds

∣∣∣∣V GP
t = v

]
E

[∫ T
0
J

1−γψ
1−γ
s Dψ

s (V GP
s )ψ−1

] . (A-7)

If we further assume the intertemporal elasticity of substitution as ψ = 1, then the function

V ∗ simplifies to

V ∗(t, v) = V0v
E
[∫ T

t
JsDsds

∣∣∣V GP
t = v

]
E
[∫ T

0
JsDs

] .

Further analysis of this equation and of (A-7) requires among others studying the distribu-
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tional properties of the GP.

B Optimal Portfolio Value for Particular GP Processes

Section 3 identifies properties of the GP that would allow us to find the minimal possible price

for a targeted payoff, while subsequent sections show how to hedge this payoff conveniently

by only investing in a proxy of the GP and the baseline security. This lead us in Section 5

to study tradeable proxies of the GP.

In addition, from a modeling perspective, this draws our attention to properties of the GP

and modeling its dynamics adequately. Constructing a proxy of the GP and interpreting it as

GP would then avoid the practically challenging and almost impossible task of modeling and

estimating all those factors and parameters that determine the entire market dynamics and

that, in principle, one needs to have access to in order to identify accurately the theoretically

precise GP. Therefore, we will assume in the following that we have constructed a tradeable

proxy of the GP and, therefore focus on exploring properties of the GP that are sufficient

for hedging in consumption-savings investments.

It is important to recall that different to the well-known martingale technique, see Pen-

nacchi (2008), and Cvitanić and Zapatero (2004), we do not assume the existence of an

equivalent risk neutral probability measure. This allows us to use a much richer modeling

world when characterizing the dynamics of the market. The first subsection below assumes

a classical market model with a constant investment opportunity, whereas the second sub-

section considers a market model that is more realistic and does not fit any longer into the

world of classical market models.

B.1 Constant Investment Opportunity Set

A most convenient case has been widely studied in the literature, where one assumes a

Black-Scholes dynamics with constant volatility for the GP. When we assume a constant

market price of risk θt = θ > 0, we obtain for any 0 ≤ t ≤ s ≤ T for the discounted GP the

expression

V GP
s = V GP

t exp

{
θ2

2
(s− t) + θ(Ws −Wt)

}
and so E

[(
V GP
s

)(1/γ)−1
∣∣∣V GP

t

]
=

(
V GP
t

)(1/γ)−1
exp

{
θ2
1− γ

2γ2
(s− t)

}
.

This allows us to express the value function V ∗ in terms of the GP as in Subsection 5.2. We

then derive in the case of preferences over terminal wealth based on (54) the benchmarked
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value function

V̂ ∗
t =

V ∗(t, V GP
t )

V GP
t

= V0 exp

(
θ2
γ − 1

2γ2
t

)(
V GP
t

)(1/γ)−1
. (B-8)

Multiplying this expectation through with V GP
t = v, yields V ∗(t, V GP

t . By taking the

first order derivative of V ∗(t, V GP
t ) w.r.t. v, we note that the right hand side in this equation

is proportional to V ∗(t, V GP
t , that is

∂V ∗(t, V GP
t )

∂V GP
t

=
1

γ

V ∗(t, V GP
t )

v
=

1

γ
V̂ ∗
t .

According to Theorem 9, therefore, V ∗(t, V GP
t ) also denotes γ times the number of units of

the GP the investor holds.

Next, we look at the case of time-additive CRRA preferences, where we write

ρ = θ2
1− γ

2γ2
− δ/γ.

We derive that

E

[∫ T

t

e−(δ/γ)s(V GP
s )1/γ−1ds+ εe−(δ/γ)T (V GP

T )1/γ−1

∣∣∣∣V GP
t = v

]
=

(
V GP
t

)1/γ−1
e−(δ/γ)t

∫ T

t

exp {ρ(s− t)} ds+ ε
(
V GP
t

)1/γ−1
e−(δ/γ)t exp {ρ(T − t)}

=
(
V GP
t

)1/γ−1
e−(δ/γ)t 1

ρ
(exp {ρ(T − t)} − 1) + ε

(
V GP
t

)1/γ−1
e−(δ/γ)t exp {ρ(T − t)}

In the case of time-additive CRRA preferences we then find based on (51) that

V ∗(t, v)

v
= V0v

1/γ−1e−(δ/γ)t ·
1
ρ
(exp {ρ(T − t)} − 1) + ε exp {ρ(T − t)}

1
ρ
(exp {ρT} − 1) + ε exp {ρT}

.

B.2 Minimal Market Model

In the Minimal Market Model (MMM) of Platen (2001), see also Chapter 13 in Platen and

Heath (2010), the (discounted) GP V GP
t can be expressed as the product

V GP
t = Ytαt (B-9)

of a square root process (Ys)0≤s≤T of dimension four with an exponential function of time

αt = α0 exp(ηt), η > 0, α0 > 0, where

dYt = (1− Yt)ηdt+
√
ηYtdW̃t (B-10)
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for 0 ≤ t < ∞, Y0 =
1
α0
, with W̃ denoting a Brownian motion. The volatility of V GP

t equals

then that of Yt, which is

b̃Ft =

√
κ

Yt
=

√
καt
V GP
t

. (B-11)

The only two parameters needed are α0 > 0 and η. Both can be fitted by noting that

the quadratic variation of
√
V GP
t equals

φ(t) =<
√
V GP
t >t=

α

4

(
eηt − 1

)
, (B-12)

such that

η =
1

t
ln

(
<
√
V GP
t >t

α0

+ 1

)
, (B-13)

which allows one to estimate η and also α0 for sufficiently long time periods.

As shown in Platen and Heath (2010), the MMM does not fit under the classical no-

arbitrage paradigm because the inverse of the discounted GP is not a true martingale and

only a strict local martingale. Therefore, the density of the putative risk-neutral measure
V GP0

V GPt
is only a strict local martingale, and an equivalent risk-neutral probability measure does

not exist. From equation (8.7.14) in Platen and Heath (2010) it follows for γ ∈ (1,∞] and

0 ≤ t ≤ s <∞ that

E[(V GP
s )(1/γ)−1|V GP

t ] (B-14)

= (2(φ(s)− φ(t))(1/γ)−1 exp

{
− V GP

t

2(φ(s)− φ(t))

} ∞∑
k=0

(
V GP
t

2(φ(s)− φ(t))

)k Γ( 1
γ
+ 1 + k)

k! Γ(k + 2)
,

where

φ(t) =
α0

4η

(
eηt − 1

)
, (B-15)

and Γ denotes the Gamma function. For instance, in the special case γ = 1/2 we have

E[V GP
s |V GP

t ] = 4(φ(s)− φ(t)) + V GP
t . (B-16)

In the case γ = 1 we have log-utility and obtain

E[(V GP
s )0|V GP

t ] = 1

which yields an important simplification of any calculation.
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