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Abstract

We analyze the relation between expected option returns and the volatility of the underlying

securities. In the Black-Scholes-Merton and stochastic volatility models, the expected return

from holding a call (put) option is a decreasing (increasing) function of the volatility of the

underlying. These predictions are strongly supported by the data. In the cross-section

of stock option returns, returns on call (put) option portfolios decrease (increase) with

underlying stock volatility. This strong negative (positive) relation between call (put) option

returns and volatility is not due to cross-sectional variation in expected stock returns. It

holds in various option samples with di¤erent maturities and moneyness, and it is robust to

alternative measures of underlying volatility and di¤erent weighting methods. Time-series

evidence also supports the predictions from option pricing theory: Future returns on S&P

500 index call (put) options are negatively (positively) related to S&P 500 index volatility.

JEL Classi�cation: G12

Keywords: expected option returns; volatility; cross-section of option returns.
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1 Introduction

Coval and Shumway (2001) �rmly integrate the study of expected option returns into main-

stream asset pricing theory. They �nd that index option data con�rm the theoretically expected

relation between moneyness and expected returns on puts and calls. More recently, the empirical

literature on the cross-section of equity option returns has been expanding rapidly, along with

increasing liquidity and data availability. For example, Boyer and Vorkink (2014) investigate

the relation between skewness and option returns. Goodman, Neamtiu, and Zhang (2013) �nd

that fundamental accounting information is related to future option returns. A related literature

documents the impact of inventory and order �ow on option returns (see Muravyev, 2015 and

the references therein).

Several papers control for volatility when investigating determinants of the cross-section of

option returns, but the use of volatility as a control variable is usually motivated by discussing

the relation between volatility and option prices. One argument considers the e¤ect of an unex-

pected (future) change in volatility. This increases the future option price and therefore returns.

From the perspective of asset pricing theory, which emphasizes the relation between ex ante risk

and expected return, this argument is incomplete. An alternative argument considers a contem-

poraneous increase or shock in volatility. This increases the current price of the option, which

leads to the hypothesis that volatility and returns are negatively related. This argument applies

to a transitory shock to volatility, which ignores that changes in the volatility level may a¤ect

the future option payo¤. We conclude that when discussing volatility and option returns, several

arguments are used in the empirical literature that may refer to current or future volatility, to

anticipated or unanticipated changes in volatility, and to the impact of volatility on current or

future prices.

This paper attempts to contribute to this literature by explicitly considering the ex ante

relation between volatility and expected option returns. This integrates the analysis of volatil-

ity as a determinant of expected option returns into mainstream asset pricing theory, following

Coval and Shumway�s (2001) analysis of moneyness. We analytically study the relation between

volatility and discrete holding period returns, and empirically investigate this theoretical predic-

tion. Building on the work of Rubinstein (1984) and Broadie, Chernov, and Johannes (2009), we

�rst use analytical expressions for expected holding period option returns in the context of the

Black-Scholes-Merton framework. The expected return on holding a call option is a decreasing

function of the underlying volatility, while the expected return on holding a put option is an

increasing function of the underlying volatility.

Our results can easily be understood in terms of leverage, consistent with the intuition in
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Coval and Shumway (2001), who analyze index call and put returns as a function of the leverage

due to moneyness. The leverage embedded in an option is a function of moneyness, maturity,

and volatility. Figure 1 plots expected returns as a function of volatility for an ATM option with

one month maturity. Expected call returns are positive and expected put returns are negative,

following the arguments in Coval and Shumway (2001). For both calls and puts, the absolute

value of returns is higher for the low-volatility options. This re�ects leverage: low volatility

options are cheaper and therefore constitute a more leveraged position.

We provide several extensions of the benchmark analysis. The empirical shortcomings of

the Black-Scholes-Merton model are well-documented, and we therefore investigate if realistic

extensions of the Black-Scholes-Merton model lead to di¤erent theoretical predictions. We use

realistic parameterizations of the Heston (1993) model to show that if volatility is time-varying

and if the innovations to volatility and returns are correlated, similar predictions obtain.

We provide cross-sectional and time-series tests of this theoretical relation between stock

volatility and expected option returns. Using the cross-section of stock option returns for 1996-

2013, we document that call (put) option portfolio returns exhibit a strong negative (positive)

relation with underlying stock volatilities. Sorting available one-month at-the-money options

into quintiles, we �nd a statistically signi�cant di¤erence of �13:8% (7:1%) per month between

the average returns of the call (put) option portfolio with the highest underlying stock volatilities

and the call (put) portfolio with the lowest underlying volatilities. We demonstrate that these

�ndings are not driven by cross-sectional variation in expected stock returns. Our results are

robust to using di¤erent option maturities and moneyness, alternative measures of underlying

volatility and portfolio weighting methods, and relevant control variables.

We also provide time-series evidence. We �nd that index call (put) options tend to have

lower (higher) returns in the month following high volatility periods. The �ndings are robust to

di¤erent index volatility proxies and are not driven by illiquid option contracts. The time-series

results complement our cross-sectional �ndings and provide empirical support for our theoretical

predictions.

To the best of our knowledge the cross-sectional relation between option returns and volatil-

ity has not been documented in the empirical asset pricing literature, but some existing studies

contain related results. Galai and Masulis (1976) and Johnson (2004) study very di¤erent empir-

ical questions related to capital structure and earnings forecasts respectively, but their analytical

results are related, exploiting the relation between volatility and instantaneous expected option

returns. Galai and Masulis (1976) argue that, under the joint assumption of the CAPM and the

Black-Scholes-Merton model, the expected instantaneous rate of return on �rm equity, which is

a call option on �rm value, decreases with the variance of the rate of return on �rm value under
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certain (realistic) additional restrictions. Johnson (2004) points out that in a levered �rm, the

instantaneous expected equity return decreases as a function of idiosyncratic asset risk. He uses

this insight to explain the puzzling negative relation between stock returns and the dispersion

of analysts� earnings forecasts. We show that in a Black-Scholes-Merton setup, the negative

(positive) relation between expected call (put) option return and underlying volatility can be

generalized to empirically observable holding periods, and we provide empirical evidence consis-

tent with these theoretical predictions. It is well known (see for instance Broadie, Chernov, and

Johannes, 2009) that results for instantaneous returns may not generalize to empirically observ-

able holding periods, because the option price is a convex function of the price of underlying

security. Our focus on holding period returns instead of instantaneous returns facilitates the

interpretation of the empirical results. It also has certain analytical advantages, which become

apparent when we analyze stochastic volatility models.

In other related work, Lyle (2014) explores the implications of the negative relation between

expected call option returns and underlying volatility to study the relation between informa-

tion quality and future option and stock returns. Broadie, Chernov, and Johannes (2009) use

simulations to show that expected put option returns increase with underlying volatility.

Finally, recent empirical work on equity options has documented several interesting patterns

in the cross-section of option returns that are related to the volatility of the underlying securi-

ties. Goyal and Saretto (2009) show that straddle returns and delta-hedged call option returns

increase as a function of the volatility risk premium, the di¤erence between historical volatility

and implied volatility. Vasquez (2012) reports a positive relation between the slope of the implied

volatility term structure and future option returns. Cao and Han (2013) document a negative

relation between the underlying stock�s idiosyncratic volatility and delta-hedged equity option

returns. Duarte and Jones (2007) analyze the relation between delta-hedged equity option re-

turns and volatility betas. These studies all focus on volatility, but they analyze its impact on

delta-hedged returns and straddles. Under the null hypothesis that the Black-Scholes-Merton

model is correctly speci�ed, volatility should not a¤ect delta-hedged returns in these studies, and

therefore the main focus of these papers is by de�nition on the sources of model misspeci�cation.

The objective of our paper is instead to analyze the theoretical and empirical relation between

volatility and raw option returns, and to integrate this analysis into the mainstream asset pricing

literature. Volatility is one of the main determinants of option prices and returns. Given that

the theoretical predicted relations are validated by the data, our work suggests that empirical

work on option returns may want to control for the e¤ect of volatility when identifying other

determinants of option returns.

The paper proceeds as follows. Section 2 provides the analytical results on the relation
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between expected option returns and underlying stock volatility in the Black-Scholes-Merton

model. Section 3 discusses the data. Section 4 presents our main empirical results, using data

on the cross-section of stock option returns. Section 4 also presents results on straddles and

investigates expected returns in a stochastic volatility model. Section 5 performs an extensive

set of robustness checks. Section 6 discusses several extensions as well as related results. Section

7 presents time-series tests using index options, and Section 8 concludes the paper.

2 Volatility and Expected Option Returns

In this section, we derive the analytical results on the relation between option returns and the

volatility of the underlying security. We �rst derive these results in the context of the Black-

Scholes-Merton model (Black and Scholes, 1973; Merton, 1973), even though it is well known

that the Black-Scholes-Merton model has some empirical shortcomings. Most importantly, more

accurate valuation of options is possible by accommodating stochastic volatility as well as jumps

in returns and volatility.1 However, the Black-Scholes-Merton model has the important advantage

of analytical tractability, and we therefore use it to derive a benchmark set of theoretical results.

In Section 4.4, we investigate if these results continue to hold if other, more realistic, processes

are assumed for the underlying securities.

Much of the literature on option returns uses expected instantaneous option returns. In the

Black-Scholes-Merton model, consider the following notation for the geometric Brownian motion

dynamic of the underlying asset:
dSt
St

= �dt+ �dBt (2.1)

where St is the price of underlying asset at time t, � is the volatility parameter, and � is the drift

or the expected return of the underlying asset. It can be shown that in this model, the expected

instantaneous option return is linear in the expected instantaneous return on the underlying

asset:

E(
dOt

Ot

) = rdt+
@Ot

@St

St
Ot

(�� r)dt (2.2)

where Ot is the price of the European option, and r is the risk-free rate. This expression provides

some valuable intuition regarding the determinants of expected option returns. The expected

option return depends on @Ot
@St

St
Ot
, which re�ects the leverage embedded in the option. The leverage

itself is a function of moneyness, maturity, and the volatility of the underlying security.

1For studies of option pricing with stochastic volatility and jumps, see for instance Bates (1996), Bakshi, Cao,
and Chen (1997), Chernov and Ghysels (2000), Eraker (2004), Jones (2003), Pan (2002), and Broadie, Chernov,
and Johannes (2007).
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Equation (2.2) provides valuable intuition on option returns, but it has some important

drawbacks and limitations. Some of these drawbacks follow from the fact that for empirically

observable holding periods, the linear relation between the option returns and the underlying

asset returns may not hold because the option price is a convex function of the price of underlying

asset. For more complex stochastic volatility models, these drawbacks are more severe, see

Broadie, Chernov, and Johannes (2009). We analyze stochastic volatility models in Section 4.4.

These drawbacks also surface when analyzing the relation between volatility and expected

option returns. We can use (2.2) to compute the derivative of expected returns with respect to

volatility �. Galai and Masulis (1976), in their analysis of the optionality of leveraged equity,

characterize su¢ cient conditions for this derivative to be negative for a call option when the

underlying dynamic is given by (2.1). Johnson (2004), using a similar setup, notes that the

derivative is always negative for call options. Because these statements are somewhat contradic-

tory, and also because this result does not seem to be su¢ ciently appreciated in the literature,

we include it in Appendix A.

We now investigate if this result holds for empirically observable holding periods, where we

have to account for the fact that the option price is a convex function of the price of underlying

security. We analyze the impact of underlying volatility on expected option returns by building

on the work of Rubinstein (1984) and Broadie, Chernov, and Johannes (2009), who point out

that expected option returns can be computed analytically within models that allow for analytic

expressions for option prices. For our benchmark results, we rely on the classical Black-Scholes-

Merton option pricing model to obtain an analytical expression for the expected return of holding

an option to maturity. We then compute the �rst derivative of the expected option return with

respect to the volatility of the underlying security. We show that the expected return for holding

a call option to maturity is a decreasing function of the underlying volatility, while the expected

return for holding a put option to maturity is an increasing function of underlying volatility.

Denote the time t prices of European call and put options with strike price K and maturity

T by Ct(t; T; St; �;K; r) and Pt(t; T; St; �;K; r) respectively. By de�nition, the expected gross

returns for holding the options to expiration are given by:

Rcall =
Et[max(ST �K; 0)]

Ct(t; T; St; �;K; r)
(2.3)

Rput =
Et[max(K � ST ; 0)]

Pt(t; T; St; �;K; r)
: (2.4)

Propositions 1 and 2 indicate how these expected call and put option returns change with respect

to the underlying volatility �. We provide the detailed proof for the case of the call option in
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Proposition 1, because the proof provides valuable intuition for the result. The intuition for the

case of the put option is similar and the proof is relegated to the appendix.

Proposition 1 Everything else equal, the expected return of holding a call option to expiration
is higher if the underlying asset has lower volatility (@Rcall

@�
< 0).

Proof. We start by reviewing several well-known facts that are needed to derive the main result.
If the underlying asset follows a geometric Brownian motion, the price of a European call option

with maturity � = T � t written on the asset is given by the Black-Scholes-Merton formula:

Ct(t; T; St; �;K; r) = StN(d1)� e�r�KN(d2) (2.5)

d1 =
ln St

K
+ (r + 1

2
�2)�

�
p
�

d2 =
ln St

K
+ (r � 1

2
�2)�

�
p
�

: (2.6)

Vega is the �rst-order derivative of the option price with respect to the underlying volatility. It

measures the sensitivity of the option price to small changes in the underlying volatility. The

Black-Scholes-Merton Vega is the same for call and put options:

� =
p
�St (d1) (2.7)

where  is the probability density function of the standard normal distribution. We also have:

St (d1) = e�r�K (d2). (2.8)

We �rst write the expected call option return in (2.3) in a convenient way. This allows us to

conveniently evaluate the derivative of the expected option return with respect to the underlying

volatility, using the Black-Scholes-Merton Vega in (2.7).

The denominator of (2.3) is the price of the call option and is therefore given by the Black-

Scholes-Merton formula in (2.5). The numerator of (2.3), the expected option payo¤ at expi-

ration, can be transformed into an expression that has the same functional form as the Black-

Scholes-Merton formula. We get:

Et[max(ST �K; 0)] =

Z
z�
(Ste

��� 1
2
�2�+�

p
�z �K)

1p
2�
e�

z2

2 dz (2.9)

= e�� [StN(d
�
1)� e���KN(d�2)] (2.10)
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where

z� =
ln K

St
� (�� 1

2
�2)�

�
p
�

d�1 =
ln St

K
+ (�+ 1

2
�2)�

�
p
�

d�2 =
ln St

K
+ (�� 1

2
�2)�

�
p
�

. (2.11)

Combining (2.5) and (2.10), the expected return for holding a European call option to maturity

is given by:

Rcall =
Et[max(ST �K; 0)]

Ct(t; T; St; �;K; r)
=
e�� [StN(d

�
1)� e���KN(d�2)]

StN(d1)� e�r�KN(d2)
. (2.12)

Taking the derivative of (2.12) with respect to � gives:

@Rcall

@�
=

e��
p
�St (d

�
1)[StN(d1)� e�r�KN(d2)]� e�� [StN(d

�
1)� e���KN(d�2)]

p
�St (d1)

[StN(d1)� e�r�KN(d2)]2

=
e��
p
�Stf (d�1)[StN(d1)� e�r�KN(d2)]�  (d1)[StN(d

�
1)� e���KN(d�2)]g

[StN(d1)� e�r�KN(d2)]2
. (2.13)

Note that we use equation (2.7) to derive (2.13). From (2.13) it can be seen that @Rcall
@�

inherits

the sign of EX =  (d�1)[StN(d1)� e�r�KN(d2)]� (d1)[StN(d�1)� e���KN(d�2)]. We now show
that EX is negative. We have:

1

 (d�1) (d1)
EX =

StN(d1)� e�r�KN(d2)

 (d1)
� StN(d

�
1)� e���KN(d�2)

 (d�1)
: (2.14)

Using equation (2.8), it follows that

1

 (d�1) (d1)
EX =

StN(d1)� St (d1)
 (d2)

N(d2)

 (d1)
�
StN(d

�
1)�

St (d�1)
 (d�2)

N(d�2)

 (d�1)
(2.15)

= St[(
N(d1)

 (d1)
� N(d2)

 (d2)
)� (N(d

�
1)

 (d�1)
� N(d�2)

 (d�2)
)]. (2.16)

According to economic theory, the expected rate of return on risky assets must exceed the risk-

free rate (� > r). We therefore have d�1 > d1 and d�2 > d2. We also have d�1 � d�2 = d1 � d2 as

well as d�1 > d�2 and d1 > d2, from the de�nition of (2.6) and (2.11). Now consider N(d)
 (d)

. It can

be shown that it is an increasing and convex function of d. Evaluating N(d)
 (d)

at d1, d2, d�1, and

d�2, it can be seen that the expression (
N(d1)
 (d1)

� N(d2)
 (d2)

)� (N(d
�
1)

 (d�1)
� N(d�2)

 (d�2)
) e¤ectively amounts to the

negative of the second di¤erence (derivative) of an increasing and convex function. Therefore:

(
N(d1)

 (d1)
� N(d2)

 (d2)
)� (N(d

�
1)

 (d�1)
� N(d�2)

 (d�2)
) < 0. (2.17)
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This implies EX < 0 which in turn implies @Rcall
@�

< 0.

Proposition 2 Everything else equal, the expected return of holding a put option to expiration
is higher if the underlying asset has higher volatility (@Rput

@�
> 0).

Proof. See Appendix B.

There is a subtle but important di¤erence compared to the proof for instantaneous returns. In

the instantaneous case, one exploits the fact that N(x)
 (x)

is an increasing function in x. In contrast,

the �nite-period derivation relies on the fact thatN(x)
 (x)

is not only an increasing but also a convex

function in x. This is required because any �nite holding period option return is a nonlinear

function of �, whereas the instantaneous return is a linear function of �:

These results can be extended to compute expected option returns over any holding period h

in the Black-Scholes-Merton model. Following Rubinstein (1984), the expected return on a call

option is given by

Rh
call =

e�h[S0N(d
�
1)� e�[r+(��r)HP ]TKN(d�2)]

S0N(d1)� e�rTKN(d2)
(2.18)

d�1 =
ln S0

K
+ [HP (�� r) + r + 1

2
�2]T

�
p
T

d�2 =
ln S0

K
+ [HP (�� r) + r � 1

2
�2]T

�
p
T

where the timeline is shifted to [0; T ] from [t; T ] to ease notation, h is the holding period (0 <

h < T ), and HP = h=T is the ratio of the holding period to the life of the option contract.

Details are provided in Appendix C. Note that the expected holding-to-expiration option return

in (2.12) is nested in (2.18), for HP = 1. We can use the structure of the proof of Proposition

1 to show @Rhcall
@�

< 0, by observing r + (� � r)HP > r. Thus, we conclude that expected call

(put) option returns decrease (increase) with underlying volatility for any holding period in the

Black-Scholes-Merton model.

Figure 2 graphically illustrates these results for a realistic calibration of the Black-Scholes-

Merton model. We set � = 10% and r = 3%. We present results for out-of-the-money, at-the-

money, and in-the-money options. The left-side panels are for calls and the right-side panels are

for puts. Figure 2 clearly illustrates the qualitative results in Propositions 1 and 2. We discuss

the quantitative implications in more detail in Section 6.2.

The patterns in expected returns suggest a simple interpretation of our results in terms of

leverage, consistent with the intuition in Coval and Shumway (2001). As mentioned before,
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in equation (2.2), @Ot
@St

St
Ot
re�ects the leverage embedded in the option, which is a function of

moneyness, maturity, and volatility. Coval and Shumway (2001) analyze index call and put

returns as a function of the leverage due to moneyness. Figure 1 plots expected returns as a

function of volatility for an ATM option with one month maturity. The expected return on the

stock is � = 10%. Expected call returns are positive and expected put returns are negative,

following the arguments in Coval and Shumway (2001). For both calls and puts, the absolute

value of returns is higher for the low-volatility options. This re�ects leverage: low volatility

options are cheaper and therefore constitute a more leveraged position.2 Note that in the limit,

as volatility goes to in�nity, the expected call return approaches the stock return and the expected

put return approaches the riskfree rate.

3 Data

We conduct two empirical exercises, one using the cross-section of equity option returns, and

another one using the time series of index option returns. Here we discuss the two datasets used

in these exercises. The sample period is from January 1996 to July 2013 for both datasets.

3.1 Equity Option Data

The main objective of our empirical exercise is to test Propositions 1 and 2 using the cross-section

of options written on individual stocks. Propositions 1 and 2 predict a relation between expected

option returns and underlying volatility, everything else equal. When studying the relation

between option returns and the underlying volatility, it is therefore critical to control for other

option characteristics that a¤ect returns. Existing studies have documented that moneyness and

maturity also a¤ect option returns, see for example Coval and Shumway (2001).

To address this issue, we use option samples that are homogeneous in maturity and mon-

eyness. For our benchmark empirical analysis, we use the cross-section of stock options that

are at-the-money and one month away from expiration, because these are the most frequently

traded options, and they are subject to fewer data problems (see, among others, Goyal and

Saretto, 2009). In subsequent robustness exercises, we use options with di¤erent maturities and

moneyness.

We obtain stock return data from CRSP and relevant accounting information from Com-

pustat. We obtain option data from OptionMetrics through WRDS. OptionMetrics provides

2Higher volatility options are sometimes incorrectly thought of as more leveraged, presumably capturing the
relation between unanticipated changes in volatility and higher prices. This argument ignores the cost of the
option position.
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historical option closing bid and ask quotes, as well as information on the underlying securities

for U.S. listed index options and equity options. Every month, on the �rst trading day after

monthly option expiration, we select equity options with 0:95 � K=S � 1:05 that expire over

the next month.3 The expiration day for standard exchange-traded options is the Saturday im-

mediately following the third Friday of the expiration month, so our sample consists mainly of

Mondays. If Monday is an exchange holiday, we use Tuesday data.

We apply several standard �lters to the option data. An option is included in the sample

if it meets all of the following requirements: 1) The best bid price is positive and the best bid

price is smaller than the best o¤er price; 2) The price does not violate no-arbitrage bounds. For

call options we require that the price of the underlying exceeds the best o¤er, which is in turn

higher than max(0; S �K). For put options we require that the exercise price exceeds the best

bid, which is in turn higher than max(0; K � S); 3) No dividend is paid over the duration of

the option contract; 4) Open interest is positive; 5) Volume is positive; 6) The bid-ask spread is

higher than the minimum tick size, which is equal to $0:05 when the option price is below $3, and

$0:10 when the option price is higher than $3; 7) The expiration day is standard, the Saturday

following the third Friday of the month; 8) Settlement is standard; 9) Implied volatility is not

missing.

We compute the monthly return from holding the option to expiration using the mid-point

of the bid and ask quotes as a proxy for the market price of the option contract. If an option

expires in the money, the return to holding the option to maturity is the di¤erence between the

terminal payo¤ and the initial option price divided by the option price. If an option expires

out of the money, the option return is �100%. Our equity option sample contains 247,859 call
options and 188,046 put options over the time period from January 1996 to July 2013.4

In our benchmark results, we measure volatility using realized volatility computed using daily

data for the preceding month, and we refer to this as 30-day realized volatility.5 In the robustness

analysis we use realized volatility over di¤erent horizons, which is also computed using daily data

over the relevant horizon.

Table 1 reports summary statistics for equity options across moneyness categories. Moneyness

3We obtain similar results when we use options collected on the �rst trading day of each month.
4Stock options are American. We do not fully address the complex issue of early exercise, but attempt to

reduce its impact by only including options that do not have an ex-dividend date during the life of the option
contract. This of course does not address early exercise of put options (Barraclough and Whaley, 2012). However,
several studies (see among others Broadie, Chernov, and Johannes, 2007; Boyer and Vorkink, 2014) argue that
adjusting for early exercise has minimal empirical implications. See also the discussion in Goyal and Saretto
(2009).

5Because this measure uses data for the previous month, it is e¤ectively based on approximately 22 returns.
For convenience, we refer to it as 30-day volatility. The same remark applies to volatility measures for other
horizons used throughout the paper.
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is de�ned as the strike price over the underlying stock price. On average the returns to buying

call (put) options are positive (negative). Put option returns increase with the strike price. Call

returns increase for the �rst four quintiles but decrease for the �fth.6 Also note that option-

implied volatility exceeds realized volatility for all moneyness categories, but the di¤erences are

often small. Gamma and Vega are highest for at-the-money options and decrease as options

move away from the money.

3.2 Index Option Data

We also investigate the relation between volatility and expected returns using the time series

of index option returns. On the �rst trading day after each month�s option expiration date, we

collect index options with moneyness 0:9 � K=S � 1:1 that mature in the next month. Table 2
provides summary statistics for SPX option data by moneyness. Index put options (especially

out-of-the-money puts) generate large negative returns, consistent with the existing literature (see

for example Bondarenko, 2003). For example, for the moneyness interval 0:94 < K=S � 0:98, the
average return is �40:6% per month. Table 2 also shows that in our sample, out-of-the-money

SPX calls have large negative returns. This is consistent with the results in Bakshi, Madan, and

Panayotov (2010).

Comparing Tables 2 and 1 highlights several important di¤erences between index options

and individual stock options. First, the volatility skew, the slope of implied volatility against

moneyness, is much less pronounced for individual stock options. Second, the average realized

volatility for index options is approximately 17%, and therefore the volatility risk premium for

index options exceeds the volatility risk premium for stock options. This is consistent with

existing �ndings, but note that the index variance risk premium in our paper is smaller than

many existing �ndings due to our sample period.

4 Volatility and the Cross-Section of Option Returns:

Empirical Results

In this section, we empirically test Propositions 1 and 2 using the cross-section of options written

on individual stocks. First, we present our benchmark cross-sectional results. As mentioned

before, for our benchmark empirical analysis, we use the cross-section of stock options that are

6We veri�ed that returns for further out-of-the money calls continue to decrease. Returns for calls are therefore
non-monotonic as a function of moneyness, consistent with the results for index returns in Bakshi, Madan, and
Panayotov (2010).
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at-the-money and one month away from expiration to control for option characteristics other than

volatility that a¤ect returns. Subsequently, we conduct a series of tests to control for the expected

returns on the underlying stocks. We also discuss the relation between volatility and straddle

returns. Finally, the Black-Scholes-Merton model has some well-known empirical shortcomings,

and it is possible that adjusting the theoretical model for these empirical shortcomings may a¤ect

the results. The most important shortcoming is the constant volatility assumption. We therefore

investigate if our �ndings are robust to the presence of stochastic return volatility.

4.1 The Cross-Section of Option Portfolio Returns

Each month, on each portfolio formation date, we sort options with moneyness 0:95 � K=S �
1:05 into �ve quintile portfolios based on their realized volatility, and we compute equal-weighted

returns for these option portfolios over the following month. We conduct this exercise for call

and put options separately.

Panel A of Table 3 displays the averages of the resulting time series of returns for the �ve

call option portfolios, as well as the return spread between the two extreme portfolios. Portfolio

�Low� contains call options with the lowest realized volatility, and portfolio �High� contains

call options with the highest realized volatility. Proposition 1 states that the expected call

option return is a decreasing function of the underlying stock volatility. Consistent with this

result, we �nd that call option portfolio returns decrease monotonically with the underlying

stock volatility. The average returns for portfolio High and portfolio Low are 0:9% and 14:7%

per month respectively. The resulting return di¤erence between the two extreme portfolios (H-L)

is �13:8% per month and highly statistically signi�cant, with a Newey-West (1987) t-statistic of
�3:42.7

Panel B of Table 3 presents the averages of the resulting time-series of returns for the �ve put

option portfolios. Again, portfolio Low (High) contains put options with the lowest (highest)

underlying stock volatilities. For put option portfolios, the average return increases from �14:6%
per month for portfolio Low to�7:5% per month for portfolio High, with a positive and signi�cant
H-L return di¤erence of 7:1%. This �nding con�rms Proposition 2, which states that expected

put option returns are an increasing function of the underlying stock volatility.

Table 3 also provides results using only options with moneyness 0:975 � K=S � 1:025.

By using a tighter moneyness interval, we reduce the impact of moneyness on expected option

returns. The results are very similar. The average option portfolio returns decrease (increase)

with the underlying stock volatility for calls (puts). The H-L di¤erences are �13:8% and 7:7%

7T-statistics computed using the i.i.d. bootstrap as in Bakshi, Madan, and Panayotov (2010) are very similar.
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for call and put option portfolios respectively, and are statistically signi�cant. This indicates

that our empirical results are not due to di¤erences in option moneyness.8

These results are obtained using option returns computed using the mid-point of the bid and

ask quotes. To ensure that our results do not depend on this assumption, Panel C of Table 3

computes average option portfolio returns based on the ask price. As expected, average returns

are somewhat smaller than in Panels A and B. However, we again �nd a strong negative (positive)

relation between call (put) option portfolio returns and the underlying stock volatility. The H-L

di¤erences are both statistically signi�cant and are of a similar order of magnitude as the ones

reported in Panels A and B.

Figure 3 complements the average returns in Table 3 by plotting the cumulative returns on

the long-short portfolios over time. Figure 3 indicates that the negative (positive) sign for the

call (put) long-short returns is quite stable over time, although it of course does not obtain for

every month in the sample.

4.2 Controlling for Expected Stock Returns

The empirical results in Table 3 document the relation between volatility and expected option

returns. These results control for other well-known determinants of option returns such as mon-

eyness and maturity. Now we attempt to control for other confounding factors by analyzing the

role of the drift � in the law of motion for the underlying asset (2.1).

We derive Proposition 1 and 2 assuming a constant drift �. If the drift is not constant, our

empirical results in Table 3 may be due to patterns in the returns on the underlying stocks rather

than to the mechanics of option returns studied in Propositions 1 and 2. We now discuss this

in more detail. First consider a drift � that depends on volatility. We know that @Rcall
@�

> 0 and
@Rput
@�

< 0 (see Appendix D for details). We therefore need to refer to the theoretical and empirical

literature on the relation between volatility and expected stock returns. If the relation between

stock returns and volatility is positive, it cannot explain the empirical relation documented in

Table 3. If this relation is negative, on the other hand, we need to control for it in the empirical

analysis.

Theory predicts a positive relation between stock returns and volatility, but the empirical

time-series evidence is tenuous, perhaps because estimating expected returns from the time

8We focus on patterns in expected returns as a function of volatility. We do not address the more complex
question of the riskiness of these returns. Not surprisingly, the standard deviation of returns is lower for higher
volatility quintiles, but these di¤erences are small compared to di¤erences in returns. The pattern in Sharpe
ratios is therefore similar to the pattern in returns. However, Sharpe ratios are a poor measure of risk for option
strategies.
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series of returns is notoriously di¢ cult.9 In the cross-sectional literature, Ang, Hodrick, Xing,

and Zhang (2006) document a negative relation between volatility and stock returns. Their

work has inspired a voluminous literature, and some studies �nd a positive or insigni�cant cross-

sectional relation, but overall the literature con�rms their �ndings.10 We therefore need to re-visit

our results while controlling for the expected return on the underlying security. It is of course

well-known that controlling for the expected return on the underlying stock is di¢ cult. To the

extent that we are not able to do so, it is possible that the cross-sectional e¤ect documented by

Ang, Hodrick, Xing, and Zhang (2006) partly explains our results.

We now present empirical results that control for the expected return on the underlying

security in various ways. First we present results for double sorts on volatility and average

historical stock return. Second, we specify a single-factor market model for the underlying

security and control for the underlying stock�s exposure to the market. Third, we use Fama-

MacBeth regressions to control for a wide variety of determinants of expected stock returns.

Fourth, we use the option pricing model to control for the empirical di¤erences in stock returns

between quintiles.

4.2.1 Controlling for Expected Stock Returns Using Historical Averages

Expected call (put) option returns increase (decrease) with the expected return on the underlying

asset. If the high volatility portfolios in Table 3 are primarily composed of stocks that have

lower expected returns than those in the low volatility portfolios, the result that average call

(put) options in the high volatility portfolios earn lower (higher) returns may not be due to

volatility. We therefore start by documenting if the underlying stock returns a¤ect our results by

empirically controlling for expected stock returns. This is of course challenging because unlike

volatility, expected stock returns are notoriously di¢ cult to measure.

Our �rst approach follows Boyer and Vorkink (2014), who estimate expected stock returns

as the simple average of daily returns over the past six months. Each month we �rst form �ve

quintile portfolios based on estimated expected stock returns �, and then within each � quintile

options are further sorted into �ve quintile portfolios according to underlying stock volatility.

We once again measure underlying stock volatility by 30-day realized volatility.

Table 4 presents the results of this double sort. The columns correspond to di¤erent volatility

9See, among others, Nelson (1991), Campbell and Hentschel (1992), French, Schwert, and Stambaugh (1987),
Glosten, Jagannathan and Runkle (1993), Goyal and Santa-Clara (2003), Ghysels, Santa-Clara and Valkanov
(2005), Bali et al. (2005), and Bali (2008).
10See, among many others, Adrian and Rosenberg (2008), Ang, Hodrick, Xing, and Zhang (2009), Bali and

Cakici (2008), Chen and Petkova (2012), Fu (2009), Huang, Liu, Rhee, and Zhang (2009), and Stambaugh, Yu,
and Yuan (2015).
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levels, and the rows correspond to di¤erent average returns. Consistent with the single sort

results, in each � quintile call (put) option portfolio returns decrease (increase) with underlying

volatility. In all � quintiles, the average return di¤erences between the two extreme call option

portfolios are negative, ranging from �24% to �11% per month, and highly signi�cant. For put

options, the high minus low di¤erences are all positive and statistically signi�cant in four out of

�ve � quintiles. These �ndings suggest that our results are not driven by di¤erences between the

expected returns of the underlying stocks.

4.2.2 A Single-Factor Market Model

Estimates of expected returns from historical averages as in Section 4.2.1 are notoriously impre-

cise. Our next approach controls for expected returns using the simple market or index model

rather than the historical average. Panel A of Table 5 presents results for a double sort on

market beta and volatility. Beta is estimated by the market model over the most recent 30 days

preceding the portfolio formation date. The results are similar to those in Table 4, where we

control for the expected return using lagged average returns, but the t-statistics are somewhat

smaller. Average call option returns decrease with volatility for each beta quintile and the return

spread between the two extreme portfolios is statistically signi�cant across all beta quintiles. In

contrast, average put option returns increase with volatility for each beta quintile and the return

spread is signi�cant for the top three beta quintiles.

Panel B of Table 5 uses the results from the market model in a slightly di¤erent way. We

present results for sorts on idiosyncratic volatility based on the market model. Panel B indicates a

negative relation between call option portfolio returns and idiosyncratic volatility, and a positive

relation between put option portfolio returns and idiosyncratic volatility.11 We obtain similar

results when sorting on idiosyncratic volatility computed relative to the Fama-French three-factor

model.

4.2.3 Fama-MacBeth Regressions

To control as comprehensively as possible for the impact of the drift of the underlying assets on

option returns, we run Fama-MacBeth (1973) regressions that allow us to simultaneously control

for risk factors and stock characteristics that have been shown in the existing literature to be

related to expected stock returns.

11Given the additional assumption of the market model, the results in Propositions 1 and 2 e¤ectively establish
a relation between option returns and idiosyncratic volatility. This interpretation is more in line with Johnson�s
(2004) analysis of the role of volatility in returns on levered equity.
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Every month we run the following cross-sectional regression

Ri
t+1= 
0;t+
1;tV OL

i
t+�tZ

i
t+� (4.1)

where Ri
t+1 is the return on holding option i from month t to month t+1, V OL

i
t is the underlying

stock volatility for option i, and Zi
t is a vector of control variables that includes the stock�s beta,

�rm size, book-to-market, momentum, stock return reversal, the option skew, the volatility risk

premium, the slope of the implied volatility term structure, as well as option characteristics such

as moneyness, Delta, Vega, Gamma and option-beta. Option beta is de�ned as delta times the

stock price divided by the option price. Both V OLit and Z
i
t are observable at time t for option

i. We again use 30-day realized volatility as a proxy for the underlying stock volatility.

Table 6 reports the time-series averages of the cross-sectional 
 and � estimates from equa-

tion (4.1), along with Newey-West (1987) t-statistics which adjust for autocorrelation and het-

eroscedasticity. Columns (1) to (3) report regression results for call options. Column (1) of Table

6 shows that in a univariate regression the average slope coe¢ cient on 30-day realized volatility

is �0:239 with a Newey-West t-statistic of �4:19. This estimate is consistent with the sorting
results. The di¤erence in the average underlying volatility between the two extreme call option

portfolios in Table 3 is 0:6, which implies a decline of �0:239�0:6 = 14:34% per month in average
returns if a call option were to move from the bottom volatility portfolio to the top volatility

portfolio, other characteristics held constant. This estimate is very similar to the result in Table

3.

The speci�cation in column (2) includes several well-known determinants of cross-sectional

stock returns. The loading on volatility increases in absolute value from -0.239 to -0.277 and

remains highly signi�cant. The speci�cation in column (3) includes additional controls as well

as option characteristics. The slope coe¢ cient on volatility is even larger in absolute value

and is again statistically signi�cant. The results in columns (1)-(3) are all consistent with our

theoretical conjecture in Proposition 1.

In columns (4)-(6), we provide results for put options. As expected, the average slope coe¢ -

cient on underlying volatility is positive and statistically signi�cant for all speci�cations, ranging

from 11:7% to 58:4% per month. These �ndings again suggest that our results cannot be at-

tributed to di¤erences in expected stock returns. As we add more controls in column (6), the

loading on volatility increases signi�cantly in absolute value.

We conclude that the results in Table 6 are consistent with the theoretical predictions. More-

over, the empirical results get stronger when we insert more controls for expected stock returns.

For call options, the slope coe¢ cient on 30-day realized volatility is �0:389 in column (3), com-
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pared to �0:239 in column (1). For put options, the estimate in column (6) is 0:584, compared
to 0:117 in column (4). This may suggest that we control more e¤ectively for the e¤ect of the

drift of the underlying security when we include more controls. Presumably controlling for the

drift using expected returns or a market model as in Sections 4.2.1 and 4.2.2 is not very e¤ective,

which explains why the results in Tables 4 and 5 are very similar to the benchmark results in

Table 3. However, note that the t-statistic in column (3) is lower than that in column (1), and

therefore some caution is advisable when interpreting these results.

In columns (3) and (6), we also include the variance risk premium studied by Goyal and

Saretto (2009) and the slope of the volatility term structure studied by Vasquez (2012). The

variance risk premium is signi�cant for puts and the slope is signi�cant for both calls and puts.

However, note that Goyal and Saretto (2009) and Vasquez (2012) study delta-hedged returns,

and we analyze raw returns. From our perspective, the most important conclusion is that the

cross-sectional relation between volatility and returns remains in the presence of these controls.

4.2.4 A Controlled Experiment

Finally, we assess if Ang, Hodrick, Xing, and Zhang�s (2006) �nding of a negative relation

between volatility and stock returns can explain our results in a more direct way using a simple

computation. In Table 3, the di¤erence in option returns between the �fth and the �rst quintiles

is -13.8% for call options (0.9%-14.7%). We compute the average returns on the stocks in these

portfolios, which is 10.8% for the �rst quintile and 4.8% in the �fth quintile. We now �x volatility

� across these quintiles to conduct a controlled experiment and compute option returns using the

Black Scholes-Merton model. Consider a �xed � of 50%, which is close to our sample average.

This experiment indicates how much of the return di¤erential in option returns is generated by

the di¤erential in returns in the underlying stocks.

For the low volatility quintile, the average return of 10.8% and the 50% volatility yield a

monthly option return of 6.31%. For the high volatility quintile the average return is 4.8%,

which for a 50% volatility gives a 1.63% option return. The di¤erence between the two returns

is 1:63% � 6:31% = �4:68%: In other words, this computation indicates that of the 13.8%
return di¤erential in the data, 4.68% is due to the di¤erences in stock returns. The volatility

di¤erence accounts for the majority of the di¤erence in option returns, empirically con�rming

the theoretical relation.
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4.3 Volatility and Expected Straddle Returns

Straddle returns are not very sensitive to the expected returns on the underlying security. There-

fore, several existing papers that investigate the cross-sectional relation between option returns

and di¤erent aspects of volatility focus on straddle returns to separate the cross-sectional e¤ect

of volatility and volatility-related variables from that of the underlying stock returns. See for

example Goyal and Saretto (2009) and Vasquez (2012).

A straddle consists of the simultaneous purchase of a call option and a put option on the

same underlying asset. The call and put options have the same strike price and time to maturity.

The expected gross return on a straddle is given by:

Rstraddle =
Et[max(ST �K; 0)] + Et[max(K � ST ; 0)]

Ct(� ; St; �;K; r) + Pt(� ; St; �;K; r)

where Ct(� ; St; �;K; r) and Pt(� ; St; �;K; r) are the call and put prices that an investor has to

pay to build a long position in straddle.

Because the derivative of calls and puts with respect to volatility has the opposite sign,

it is impossible to obtain general results for straddles. Appendix E shows that d2 > 0 is a

su¢ cient condition for a negative relation between straddle returns and underlying volatility.

Recall that d2 =
ln

St
K
+(r� 1

2
�2)�

�
p
�

. The condition d2 > 0 is thus likely to hold for straddles with

strike prices below the current stock price, and we investigate if average straddle returns decrease

with underlying volatility for such straddles. Table A.1 con�rms that this relation indeed holds

in the data. However, e¤ectively the return on the straddle is dominated by the call option when

d2 > 0, which means that the negative sign in theory and in the data simply con�rms the results

above.

4.4 Stochastic Volatility and Expected Option Returns

The Black-Scholes-Merton model�s treatment of volatility is perhaps its most important short-

coming. An extensive literature has demonstrated that volatility is time varying, and that (the

innovations to) volatility and stock returns are correlated.12 This correlation is often referred to

as the leverage e¤ect.

To address the implications of time-varying volatility and the leverage e¤ect, we now analyze

expected option returns using a stochastic volatility model instead of the Black-Scholes-Merton

model. We use the Heston (1993) model, which has become the benchmark in this literature

12For seminal contributions to this literature, see Engle (1982), Bollerslev (1986), Nelson (1991), Glosten,
Jagannathan and Runkle (1993), and Engle and Ng (1993).
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because it captures important stylized facts such as time-varying volatility and the leverage

e¤ect, while also allowing for quasi-closed form European option prices. The Heston (1993)

model assumes that the asset price and its spot variance obey the following dynamics under the

physical measure P :

dSt = �Stdt+ St
p
VtdZ

P
1

dVt = �(� � Vt)dt+ �
p
VtdZ

P
2

where � is the drift of the stock price, � is the long run mean of the stock variance, � is the rate

of mean reversion, � is the volatility of volatility, and Z1 and Z2 are two correlated Brownian

motions with E[dZ1dZ2] = �dt.

By focusing on discrete holding periods instead of instantaneous returns, we can express

expected returns in the Heston model in quasi-closed form.13 Appendix F shows that the expected

return of holding a call option to expiration in the Heston model is given by:

RHeston
call (St; V t; �) =

e�� [StP
�
1 � e���KP �2 ]

StP1 � e�r�KP2
(4.2)

where P1, P2, P �1 and P
�
2 are de�ned in Appendix F. The expected call option return in the

Heston model has the same functional form as in the Black-Scholes-Merton model, but unlike

for the Black-Scholes-Merton model, the sign of @RHestoncall (St;V t;�)

@Vt
cannot be derived analytically.

However, the expected option return in equation (4.2) can be easily calculated numerically given

a set of parameter values.

In Panels B and C of Table 7, we compute expected option returns according to (4.2) for

di¤erent parameterizations of the expected stock return � and the conditional stock variance.

For simplicity we �rst set the variance risk premium � equal to zero. For all other parameters,

we use the parameters from Broadie, Chernov, and Johannes (2009), which are listed in Panel

A. The patterns in expected option returns in a stochastic volatility model are similar to the

patterns in Black-Scholes-Merton expected option returns. In particular, expected call option

returns increase (decrease) with expected stock return (current stock variance), whereas expected

put option returns decrease (increase) with expected stock return (current stock variance). In

unreported results, we obtain similar results using di¤erent parameterizations.

In the Black-Scholes-Merton model, volatility a¤ects expected returns through leverage. In

the Heston model, volatility a¤ects expected returns not only through leverage, but also through

the volatility risk premium �. Figure 4 further explores expected returns in the Heston model.

13The delta and vega are not available in closed form when computing instantaneous option returns.

20



We set � equal to 0 or �0:5. The main conclusion is that expected returns do not strongly depend
on �. The relation between volatility and expected option returns is similar to the results in the

Black-Scholes-Merton model.14

Finally, Panel D of Table 7 shows straddle returns as a function of the volatility risk premium

�. Returns increase with higher volatility risk premiums. This is consistent with the empirical

�ndings in Goyal and Saretto (2009), who document that option returns increase as a function

of the variance risk premium.

5 Robustness

In this section we investigate the robustness of the results in Table 3 to a number of imple-

mentation choices. We investigate the robustness of the empirical results to the measurement

of realized volatility, the composition of the option sample, and the weights used to compute

portfolio returns. We also use holding-period returns rather than holding-to-maturity returns.

5.1 The Volatility Measure

Table 3 uses realized volatility computed using daily data for the preceding month as a measure

of the underlying volatility. This is a standard volatility measure that is often used in the liter-

ature. Ang, Hodrick, Xing, and Zhang (2006) and Lewellen and Nagel (2006) argue that 30-day

realized volatility strikes a good balance between estimating parameters with a reasonable level

of precision and capturing the conditional aspect of volatility. We now consider �ve alternative

estimators of underlying stock volatility. We proxy underlying volatility using realized volatilities

computed over the past 14 days, the past 60 days, and the past 365 days, as well as option-implied

volatility and a simple autoregressive AR(1) model for volatility to take into account the mean

reversion in volatility.

Panel A of Table 8 presents average returns for the �ve quintile call option portfolios and Panel

B reports average returns for put option portfolios. Consistent with our benchmark results in

Table 3, we �nd that for all underlying volatility proxies, the returns on the call option portfolios

exhibit a strong negative relation with underlying stock volatilities, while put option portfolio

returns display a strong positive relation with underlying stock volatilities. For example, when

sorting on 60-day realized volatility, the average returns for call option portfolios with the largest

and smallest underlying volatilities are 1:4% and 15:5% per month respectively. The resulting

di¤erence between the two extreme portfolios is �14:1% per month and is highly statistically

14For (unrealistically) large negative �, the relation is not monotone for OTM options.
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signi�cant with a Newey-West t-statistic of �3:44. For put option portfolios, the average returns
monotonically increase from �15:7% per month for the lowest volatility portfolio to �5:9% per

month for the highest volatility portfolio. The resulting di¤erence is 9:8% per month and is also

statistically signi�cant.

When sorting on 14-day and 365-day realized volatility, the returns display a similar pattern.

The average returns decrease (increase) with underlying volatilities for call (put) portfolios. The

return di¤erences between the two extreme call option portfolios are negative and statistically

signi�cant with a magnitude of �13% and �8:6% per month, respectively. The corresponding

di¤erences for put option portfolios are positive and statistically signi�cant, with a magnitude

of 5:9% and 11:7% per month, respectively.

We also sort options based on implied volatilities. Option-implied volatilities are attractive

because they provide genuinely forward-looking estimates, but they are model-dependent and

may include volatility risk premiums.15 Again consistent with our benchmark results, we �nd

that call (put) option portfolios with larger implied volatilities earn lower (higher) returns. Panel

A of Table 8 reveals that returns on call option portfolios monotonically decrease with implied

volatilities. The return spread is �16:6% per month and is highly statistically signi�cant. The

return spread for the two extreme put option portfolios is positive with a magnitude of 5:9% per

month, but it is not statistically signi�cant. Finally, we use an autoregressive model for volatility

instead. In particular, we obtain an estimate of conditional volatility by �tting an AR (1) model

on monthly realized volatilities. The results are again statistically signi�cant. The economic

magnitude is somewhat smaller for calls and somewhat larger for puts.

These results suggest that our empirical �ndings are not due to the volatility measure used

in Table 3.

5.2 The Option Sample

We now investigate the relation between expected option returns and underlying volatility using

�ve other option samples with di¤erent maturity and moneyness. We examine the following �ve

option samples: two-month at-the-money options, one-month in-the-money options, two-month

in-the-money options, one-month out-of-the-money options, and two-month out-of-the-money

options. We de�ne at-the-money as having moneyness of 0:95 � K=S � 1:05, in-the-money calls
as 0:80 � K=S < 0:95; and in-the-money puts as 1:05 < K=S � 1:20. Out-of-the-money calls

are de�ned as 1:05 < K=S � 1:20 and out-of-the-money puts as 0:80 � K=S < 0:95.

15On the volatility risk premium embedded in individual stock options, see Bakshi and Kapadia (2003b),
Driessen, Maenhout, and Vilkov (2009), and Carr and Wu (2009) for more details.
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Table 9 presents the results. Panel A of Table 9 provides average returns of call option

portfolios sorted on 30-day realized volatility for the �ve alternative option samples. Consistent

with the benchmark results in Table 3, we �nd that returns on call option portfolios decrease

with underlying volatility for all option samples. The return di¤erences between the two extreme

portfolios are negative and statistically signi�cant in all cases, with magnitudes ranging from

�7:8% to�18:6% per month. For instance, for two-month at-the-money calls, the equal-weighted
average option portfolio returns decrease monotonically with underlying volatility. The return

spread is �17:1% per month and highly signi�cant with a Newey-West t-statistic of �3:04.
Panel B of Table 9 presents average returns of put option portfolios sorted on 30-day realized

volatility for the �ve option samples. Average put option returns exhibit a strong positive relation

with underlying volatilities. The returns spreads are all positive and statistically signi�cant,

ranging from 5:7% to 17:8% per month. For instance, for two-month at-the-money puts, average

returns monotonically increase from �20:7% per month for the lowest volatility portfolio to

�5:6% per month for the highest volatility portfolio. The resulting return spread is 15:1% per

month and is both economically and statistically signi�cant.

For empirical results that use index options, using out-of-the-money options is very impor-

tant because this market is more liquid and has higher volume, as evidenced by Table 2. For

equity options, the di¤erences in liquidity and volume across moneyness are less pronounced, as

evidenced by Table 1. Nevertheless, it is reassuring that the results are robust when we only use

out-of-the-money options in Table 9.

These results suggest that our empirical �ndings are not due to the sample used in Table 3.

5.3 The Portfolio Weighting Method

In this subsection, we examine if the negative (positive) relation between call (put) option portfo-

lio returns and underlying volatility persists if di¤erent weighting methods are used for computing

option portfolio returns. We calculate option volume weighted, option open interest weighted

and option value weighted average portfolio returns. Option value is de�ned as the product of

the option�s open interest and its price.16

Table A.2 contains return spreads for option portfolios sorted on 30-day realized volatility,

using these alternative weighting methods. Regardless of the weighting method, the return

spreads are negative (positive) for call (put) option portfolios, and they are statistically signi�cant

in most cases. These results suggest that our empirical �ndings are not due to the equal-weighting

method used in Table 3.
16We also consider portfolio returns weighted by underlying stock capitalization and �nd similar results.
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5.4 Holding-Period Returns

Ni, Pearson, and Poteshman (2005) argue that holding-to-maturity option returns are a¤ected

by biases at expiration. We therefore repeat the analysis in Table 3 using one-month option

returns instead of holding-to-maturity returns.17 Table A.3 presents the results for ATM, ITM,

and OTM call and put options. The results are again statistically signi�cant and consistent with

Propositions 1 and 2. However, the magnitudes of the long-short returns are smaller, especially

for calls.

6 Discussion and Extensions

In this section, we further explore our results. We �rst discuss delta-hedged returns, which have

been studied in the existing literature, and we verify if the di¤erences in expected returns between

portfolios are consistent with theoretical predictions. Subsequently we investigate if the models�

quantitative implications for returns are consistent with the data and we compute option-implied

average stock returns. Finally we provide a detailed discussion of the di¤erences between our

results and those in the existing literature.

6.1 Delta-Hedged Returns

Cao and Han (2013) document that the cross-sectional relation between idiosyncratic stock

volatility and both delta-hedged call and put option returns is negative.18 It is natural to won-

der if these empirical results are consistent with our theoretical and empirical results, especially

because the results seem so di¤erent.

We show that these results are mutually consistent, and simply result from the di¤erence

between raw and delta-hedged returns. Our study may seem super�cially related to Cao and

Han (2013) but the analysis is fundamentally di¤erent. Our study empirically investigates the

theoretical relation between option returns and the underlying stock volatility, which by de�nition

is accounted for when computing delta-hedged returns. When we investigate the robustness of

our results in Section 4.2, we correct for the drift of the underlying stock, whereas delta hedging

by de�nition corrects for the entire underlying return, which includes the drift as well as the

di¤usive part.

17Broadie, Chernov, and Johannes (2009) argue against the use of holding period returns. Duarte and Jones
(2007) argue that bid-ask bounce can bias returns, which also favors the use of holding to-maturity returns.
18See also Black and Scholes (1972) on the relation between delta-hedged option returns and volatility.
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Panel A of Table 10 reports on delta-hedged returns for portfolios sorted on volatility. We

repeat the analysis in Cao and Han (2013) with two di¤erences in implementation. First, we

use total volatility instead of idiosyncratic volatility because the focus of our study is on total

volatility and we want to stay closer to the results in Table 3. Second, while Cao and Han

(2013) rebalance daily, we use static hedging for reasons to be explained below. We veri�ed that

these di¤erences in implementation do not signi�cantly a¤ect the results. Panel A demonstrates

the robustness of the results in Cao and Han (2013). Consistent with their results, we �nd a

statistically signi�cant negative relation between volatility and both call and put returns.

Bollen and Whaley (2004) and Cao and Han (2013) emphasize market frictions and inventory

management as plausible explanations for the negative relation between volatility and delta-

hedged call and put returns. Bakshi and Kapadia (2003a, 2003b) show that delta-hedged option

returns can be used to infer the market price of volatility risk if volatility is stochastic. Our

implementation uses static hedging to emphasize an additional potential explanation for these

results that di¤ers from these existing explanations. In the Black-Scholes-Merton framework,

delta-hedged option returns are exactly zero in the ideal case of continuous trading. In practice,

however, it is impossible to rebalance the portfolio continuously. It is well understood (see

for instance Branger and Schlag, 2008; Broadie, Chernov and Johannes, 2009) that empirical

investigations using delta-hedged returns must be interpreted with caution, not only due to

model misspeci�cation, but also due to discretization errors and transaction costs.

Consider how underlying volatility impacts discretely delta-hedged option returns in the

Black-Scholes-Merton model in the case of static hedging. We form the delta-hedged portfolio

at time t and keep it unadjusted until the expiration date of the option at T . The delta-hedged

return for a call option, which can also be interpreted as the hedging error, is given by

�Ct;T = CT � Ct ��t(ST � St)� (Ct ��tSt)(e
r� � 1) (6.1)

= CT ��tST � (Ct ��tSt)e
r� . (6.2)

where Ct and CT are call option prices at time t and T , S is the stock price, and r again denotes

the instantaneous risk-free rate. Using the results for the expected option payo¤ at maturity

Et(CT ), we get

Et(�
C
t;T ) = Et[CT ��tST � (Ct ��tSt)e

r� ]

= e�� [StN(d
�
1)� e���KN(d�2)]��tSte

�� � (Ct ��tSt)e
r�

= e�� [StN(d
�
1)� e���KN(d�2)]�N(d1)Ste

�� +KN(d2): (6.3)
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The expected delta-hedged return (or hedging error) for a put option is given by

Et(�
P
t;T ) = e�� [e���KN(�d�2)� StN(�d�1)] +N(�d1)Ste�� �KN(�d2): (6.4)

To understand how underlying volatility a¤ects delta-hedged option returns, we need the sign

of the partial derivatives ofEt(�Ct;T ) andEt(�
P
t;T ) with respect to �. First, note that equation (6.4)

is equivalent to equation (6.3) by put-call parity. We therefore focus on the relation between the

expected delta-hedged call option return and underlying volatility. The partial derivative
@Et(�Ct;T )

@�

is available analytically, but can either be positive or negative depending on the underlying

parameters. However, we can easily evaluate expected returns numerically for a given set of

parameters.

Table A.4 shows that this negative relationship continues to hold and is strengthened when

including other control variables in a Fama-MacBeth regression. Table A.4 also shows indicates

that the results of Goyal and Saretto (2009) are con�rmed for our sample: delta-hedged returns

on puts and calls are positively related to the variance risk premium.

Panel B of Table 10 considers static delta-hedging of a hypothetical call option with strike

price of $100 and a one-month maturity. We report expected delta-hedged returns for di¤erent

values of S, �; and �. Expected delta-hedged returns are all positive, which is consistent with the

�nding of Branger and Schlag (2008) that discretization error induces positive expected hedging

error in the Black-Scholes-Merton model. More importantly for our purpose, the expected delta-

hedged return decreases with underlying volatility for all parameter combinations.

We conclude that in the context of the Black-Scholes-Merton model, static delta-hedging will

result in a negative relation between delta-hedged option returns and underlying volatility for

plausible parameterizations of the model. This qualitative result also obtains in any practical

situation where hedging is conducted in discrete time, for instance when the hedge is rebalanced

daily. Most importantly for our conclusions, the negative relation between volatility and delta-

hedged call and put returns is consistent with the negative (positive) relation between volatility

and call (put) returns. Both cross-sectional relations are supported by the simple analytics of

the Black-Scholes-Merton model.

6.2 Volatility and Expected Option Returns: A Quantitative Assess-

ment

So far we have limited ourselves to empirically verifying the qualitative predictions in Propositions

1 and 2. We now go one step further and assess the magnitude of the return di¤erence for
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portfolios with di¤erent underlying volatility.

The �rst row of Panels A and B of Table 11 reports the benchmark results from Table

3. The call option quintile portfolio with high volatility earns 0:9% per month and the call

option quintile portfolio with low volatility earns 14:7% per month. The put option quintile

portfolio with high volatility earns �7:5% per month and the put option quintile portfolio with

low volatility earns �14:6% per month. We assess if these return di¤erences are consistent with

theory by computing expected returns and volatility for the underlying stocks for these portfolios,

and computing expected returns using the Black-Scholes-Merton model.

Using historical averages for our sample period 1996-2013, we obtain an annualized � of 4:8

percent and volatility � of 81:3 percent for the high volatility call option portfolio. For the low

volatility call option portfolio, we obtain an annualized � of 10:8 percent and volatility � of 20:9

percent. These results are reported in the second and third rows of Panel A. Assuming a 3%

annual interest rate, the Black-Scholes-Merton model predicts a expected option return of 14:5%

per month for the low volatility call option portfolio and 1:1% per month for the high volatility

call option portfolio. These results are reported in the fourth rows of Panel A. These expected

option returns are very close to the average returns in the �rst row.

The second and third rows of Panel B indicate that for the low volatility put option portfolio,

the underlying annualized � is 10:8% and the underlying volatility � is 21:4%. The high volatility

put option portfolio has a � of 4:8% and a � of 82:7%.19 Again using the Black-Scholes-Merton

model, the fourth row shows that this gives expected option returns of �12:4% and �0:5% per

month. For the low volatility portfolio, the expected return is close to the sample average in the

�rst row, but this is not the case for the high volatility put portfolio.

Overall, we conclude that the implied call option returns are close to what we observe in

the data on average, despite the well-known shortcomings of the Black-Scholes-Merton model.

The results for put options are less impressive than those for calls, which may be due to the

well-known stylized fact that put options are expensive, possibly due to demand pressure (see

Bollen and Whaley, 2004).

6.3 Option-Implied Returns and Volatility

The qualitative di¤erence between the results for call and put options in Section 6.2 can equiva-

lently be expressed in terms of option-implied returns. The last row of Panels A and B of Table

11 presents the results of this exercise. We use the average volatility in each quintile and then

19Note that the average stock returns and the average stock volatilities of the �ve quintile portfolios are slightly
di¤erent for calls and puts. This is because for some stocks we have calls but not puts and vice versa.
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invert the Black-Scholes-Merton formula to obtain an estimate of the implied �.

Table 11 indicates that the returns implied by call options are very close to the actual average

stock returns, but this is not the case for the returns implied by puts. This result is essentially

the mirror image of the �nding discussed in Section 6.2.

6.4 Further Discussion and Related Literature

We do not provide an overview of the entire related literature on empirical option pricing, because

it is vast and our results are easily distinguished.20 However, our results are at the intersection

of several strands of empirical research on cross-sectional asset pricing. We now discuss some of

these related studies in more detail in order to highlight our speci�c contribution.

The literature characterizing volatility in index returns and stock returns is well-known and

also too vast to cite here. Our paper is most closely related to a series of papers that highlight one

particular dimension of this literature, namely the cross-sectional relation between volatility and

expected stock returns. Even in this cross-sectional literature, it is important to di¤erentiate

between studies that investigate (aggregate) volatility as a pricing factor in the cross-section

of returns and studies that investigate stock returns as a cross-sectional function of their own

idiosyncratic or total volatility. Ang, Hodrick, Xing, and Zhang (2006) investigate both issues.

As discussed in Section 4.2, our contribution is clearly more related to their investigation of the

cross-sectional relation between the stock�s own (lagged) volatility and returns.

There is also a growing literature on the cross-sectional relation between option-implied in-

formation and stock returns. Once again, some papers use index options to extract marketwide

information on pricing factors for the cross-section of stock returns, while other papers use eq-

uity options to extract �rm-speci�c information that can be used as a cross-sectional predictor

of returns.21

Our paper di¤ers from all of these studies because it investigates the relation between the

volatility of the underlying (the stock) and the cross-section of option returns. The literature on

the cross-section of equity option returns has also grown rapidly.22 Boyer and Vorkink (2014)

20See Bates (2003) and Garcia, Ghysels, and Renault (2010) for excellent surveys on empirical option pricing.
21Chang, Christo¤ersen, and Jacobs (2013) use option-implied index skewness as a pricing factor. Conrad,

Dittmar and Ghysels (2013) study the relation between stock returns and volatility, skewness and kurtosis ex-
tracted from equity options. The factor used by Ang, Hodrick, Xing, and Zhang (2006) is actually the VIX, so
strictly speaking it is about option-implied information as a factor. For additional work, see, for example, Bali
and Hovakimian (2009), Cremers and Weinbaum (2010) and Xing, Zhang, and Zhao (2010).
22Another literature focus on explaining the cross-section of option prices or implied volatilities rather than

option returns. See for instance Duan and Wei (2008) and Bollen and Whaley (2004). An, Ang, Bali, and Cakici
(2014) document that stock returns are higher (lower) following increases in call (put) implied volatility, but also
link past stock returns with future option-implied volatility.
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document a negative relation between ex-ante option total skewness and future option returns.

Goodman, Neamtiu, and Zhang (2013) �nd that fundamental accounting information is related to

future option returns. Karakaya (2014) proposes a three-factor model to explain the cross-section

of equity option returns. Linn (2014) �nds that index volatility is priced in the cross-section of

option returns. Several recent papers use option valuation models to highlight cross-sectional

di¤erences between equity options.23 As discussed in Section 6.1, our work is also related to a

series of recent papers that document interesting patterns in the cross-section of delta-hedged

option returns related to the volatility of the underlying securities (Goyal and Saretto, 2009;

Vasquez, 2012).

We contribute to this growing literature on the cross-section of option returns by highlighting

the theoretically expected relation between expected option returns and stock volatility. Stock

volatility is often included in a cross-sectional study of option returns, because it is a well-known

determinant of option prices. By being explicit about the relation between volatility and call and

put returns, our work not only suggests that empirical work on option returns should control for

the e¤ect of volatility when identifying other determinants of option returns, it also predicts the

sign of the relation between volatility and returns. Our analysis suggests that when studying

other determinants of the cross-section of option returns, it is critical to �rst account for total

volatility, and it indicates how volatility a¤ects expected returns. In this sense our work is most

closely related to that of Coval and Shumway (2001), who analyze moneyness as a determinant

of di¤erent expected option returns using returns on index options.

Finally, our work is also relevant for an important literature on the sign of the volatility risk

premium embedded in equity options. The consensus in the literature is that while the negative

volatility risk premium is very large for the index, it is much smaller or nonexistent for equities.

Most of the literature uses parametric models to characterize this risk premium, but some studies,

such as Bakshi and Kapadia (2003b) have used the cross-section of delta-hedged option returns

and arrive at the same conclusion. Our analysis in Section 6.1 shows that these empirical �ndings

may be partly due to hedging errors, which generate a negative relation between volatility and

delta-hedged call and put returns.

7 Volatility and the Time Series of Index Option Returns

Thus far we have used the cross-section of equity options to provide empirical evidence supporting

Propositions 1 and 2. We now turn to the implications of our results for the extensive literature

23See Bakshi, Cao, and Zhong (2012) and Gourier (2015) for recent studies. Chaudhuri and Schroder (2015)
study the shape of the stochastic discount factor based on equity options.
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on the time series properties of index option returns.24 In this section, we explore the time-series

implications of Propositions 1 and 2 by studying the relation between monthly S&P 500 index

option (SPX) returns and S&P 500 index volatility. Consistent with Proposition 1 and 2, we

�nd that SPX call (put) options tend to have lower (higher) returns in the month following a

high volatility month.

Propositions 1 and 2 characterize a general property of expected option returns: call (put)

option returns decrease (increase) with underlying volatility. This property should hold in the

time series of option returns as well as in the cross-section. We investigate the time-series

implications of Propositions 1 and 2 by using index option returns to estimate the following

time-series regression:

Ri
t+1 = constant+ �1V OLt + �2Moneynessit + �3R

I
t + � (7.1)

where Ri
t+1 is the return on holding index option i from month t to month t + 1, RI

t is the

return on the S&P 500 in month t and V OLt is the index volatility. Moneyness (K=S) is also

included in the regression because previous studies (e.g., Coval and Shumway, 2001) have shown

that moneyness is an important determinant of option returns. Here we consider four proxies

for S&P 500 index volatility: 14-day realized volatility, 30-day realized volatility, 60-day realized

volatility, and implied volatility. These volatilities are de�ned as in the cross-sectional analysis

and are known in month t.

The slope coe¢ cient estimate on volatility �1 is the main object of interest. According to

Propositions 1 and 2, we expect �1 to be negative for SPX call options and positive for SPX put

options.

Table 12 presents the coe¢ cient estimates, t-statistics, and adjusted R-squares for the re-

gressions in equation (7.1). Consistent with Propositions 1 and 2, the slope coe¢ cient on index

volatility is always negative (positive) for SPX call (put) options, regardless of the index volatil-

ity proxy. For example, column 2 of Panel A of Table 12 shows that when using 30-day realized

volatility as the volatility proxy, the slope coe¢ cient on index volatility is �0:92 for SPX calls
and is highly signi�cant with a t-statistic of �3:78. For a 1% increase in S&P 500 volatility, the

return to holding an SPX call option over the next month is expected to decrease by 0:92%. In

contrast, in column 2 of Panel B of Table 12, the slope coe¢ cient on index volatility for SPX

puts is 1:39 and it is also highly statistically signi�cant.

24This literature includes the work by Jackwerth (2000), Coval and Shumway (2001), Bakshi and Kapadia
(2003a), Bondarenko (2003), Jones (2006), Driessen and Maenhout (2007), Driessen, Maenhout, and Vilkov
(2009), Santa-Clara and Saretto (2009), Broadie, Chernov, and Johannes (2009), Constantinides et al. (2009,
2011, 2013) and Buraschi, Trojani, and Vedolin (2014).
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These results are based on the full sample that also contains in-the-money SPX options.

However, Table 2 indicates that in-the-money SPX options are much less traded than their at-

the-money and out-of-the-money counterparts. To ensure our results are not driven by illiquid

in-the-money options, we repeat the regressions in (7.1) using only liquid options. Speci�cally,

we only consider SPX calls with 0:98 � K=S � 1:10 and SPX puts with 0:90 � K=S � 1:02.
The regression results using only liquid options are presented in columns 5 through 8 in Table

12. Consistent with the results using the full sample, we �nd that the slope coe¢ cient estimate

on index volatility is always negative (positive) and statistically signi�cant for SPX calls (puts)

regardless of the volatility proxy. For example, when using 60-day realized volatility as a proxy,

we �nd a slope coe¢ cient of �1:62 for SPX calls and 1:58 for SPX puts, and both are highly
signi�cant with t-statistics of �3:77 and 2:98 respectively. These results con�rm that our �ndings
are not due to illiquid index options.

8 Conclusion

This paper analyzes the relation between expected option returns and underlying volatility. In the

Black-Scholes-Merton or stochastic volatility model, the expected return on a call is a decreasing

function of underlying volatility and the expected put option return is an increasing function of

underlying volatility.

Our empirical results con�rm this theoretical prediction. We conduct a cross-sectional test

using stock options. We �nd that call (put) options on high volatility stocks tend to have lower

(higher) returns over the next month. We also conduct a time-series test using index option

returns. Following high volatility periods, index call (put) options tend to have lower (higher)

returns over the next month. Our empirical �ndings are robust to di¤erent empirical imple-

mentation choices, such as di¤erent option samples, weighting methods, and volatility proxies.

We also discuss results for straddles and we show that our results are consistent with existing

�ndings on the relation between volatility and delta-hedged option returns.

Our �ndings are important for the expanding literature on equity option returns. Theory

predicts that volatility is an important determinant of expected returns, and therefore volatility

should be accounted for when empirically investigating other return determinants. Our �ndings

also have important implications for other areas of �nance research. Many �nancial instruments,

such as credit default swaps, callable bonds, and levered equity, to name just a few, have embed-

ded option features. Our theoretical results are also applicable to these assets and we plan to

address this in future research. Our analysis can also be extended in several other ways. First, a

natural question is if the relation between volatility and returns can be derived without asuming
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a parametric model. Second, it might be interesting to study the relationships in this paper us-

ing more structural rather than reduced-form asset pricing models. Third, Bakshi, Madan, and

Panayotov (2010) and Christo¤ersen, Heston, and Jacobs (2013) propose variance dependent

pricing kernels. In future work we plan to investigate the implications of those pricing kernels

for the �ndings in this paper. Finally, the implications of our results for portfolio allocation need

to be explored in more detail.
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Appendix A: Volatility and Instantaneous Option Returns

We show that expected instantaneous call option return is a decreasing function with respect to

�. We need to show that the elasticity @O
@S

S
O
, denoted by EL, is a decreasing function of �. In

the Black-Scholes-Merton model, we have

EL =
@O

@S

S

O
=

StN(d1)

StN(d1)� e�r�KN(d2)
:

It follows that

@EL

@�
=

St (d1)
@d1
@�
[StN(d1)� e�r�KN(d2)]� StN(d1)[St (d1)

@d1
@�
� e�r�K (d2)

@d2
@�
]

[StN(d1)� e�r�KN(d2)]2

=
�St (d1)@d1@� e

�r�KN(d2) + StN(d1)e
�r�K (d2)

@d2
@�

[StN(d1)� e�r�KN(d2)]2

=
St (d1) (d2)e

�r�K[�@d1
@�

N(d2)
 (d2)

+ N(d1)
 (d1)

@d2
@�
]

[StN(d1)� e�r�KN(d2)]2
:

Clearly, the sign of @EL
@�

will depend on �N(d2)
 (d2)

@d1
@�
+ N(d1)

 (d1)
@d2
@�
, which we show below is always

negative. To see this, using the fact that

@d1
@�

=
p
� � d1

�
@d2
@�

= �
p
� � d2

�
,

we have

�@d1
@�

N(d2)

 (d2)
+
N(d1)

 (d1)

@d2
@�

= �(
p
� � d1

�
)
N(d2)

 (d2)
+
N(d1)

 (d1)
(�
p
� � d2

�
)

=
1

�
f�(�

p
� � d1)

N(d2)

 (d2)
+
N(d1)

 (d1)
(��

p
� � d2)g

=
1

�
fd2

N(d2)

 (d2)
� d1

N(d1)

 (d1)
g:

Note that in the last step, we use the fact that d2 = d1 � �
p
� . Finally, it can be shown that

xN(x)
 (x)

is an increasing function in x, and therefore

d1 > d2 ) d2
N(d2)

 (d2)
� d1

N(d1)

 (d1)
< 0:
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Appendix B: Proof of Proposition 2

The expected gross return of holding a put option to expiration in (2.4) can be rewritten using

the Black-Scholes-Merton formula.

Rput =
Et[max(K � ST ; 0)]

Pt(� ; St; �;K; r)

=

R z�
(K � Ste

��� 1
2
�2�+�

p
�z) 1p

2�
e�

z2

2 dz

Pt(� ; St; �;K; r)

=
e�� [e���KN(�d�2)� StN(�d�1)]
e�r�KN(�d2)� StN(�d1)

(B.1)

d�1 =
ln St

K
+ (�+ 1

2
�2)�

�
p
�

d�2 =
ln St

K
+ (�� 1

2
�2)�

�
p
�

d1 =
ln St

K
+ (r + 1

2
�2)�

�
p
�

d2 =
ln St

K
+ (r � 1

2
�2)�

�
p
�

.

Taking the derivative with respect to � in (B.1) yields:

@Rput

@�
=

e��
p
�St (�d�1)[e�r�KN(�d2)� StN(�d1)]� e�� [e���KN(�d�2)� StN(�d�1)]

p
�St (�d1)

[e�r�KN(�d2)� StN(�d1)]2

=
e��
p
�Stf (�d�1)[e�r�KN(�d2)� StN(�d1)]�  (�d1)[e���KN(�d�2)� StN(�d�1)]g

[e�r�KN(�d2)� StN(�d1)]2

where we use the fact that the Vega of a put option is
p
�St (�d1). Clearly, the sign of @Rput@�

depends on  (�d�1)[e�r�KN(�d2)� StN(�d1)]� (�d1)[e���KN(�d�2)� StN(�d�1)], which we
denote by B. Next we show B is positive. To see this,

B =  (�d�1)[e�r�KN(�d2)� StN(�d1)]�  (�d1)[e���KN(�d�2)� StN(�d�1)]
B

 (�d�1) (�d1)
=

e�r�KN(�d2)� StN(�d1)
 (�d1)

� e���KN(�d�2)� StN(�d�1)
 (�d�1)

.
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Using the fact that e�r�K (�d2) = St (�d1),

B

 (�d�1) (�d1)
=

St (�d1)
 (�d2) N(�d2)� StN(�d1)

 (�d1)
�

St (�d�1)
 (�d�2)

N(�d�2)� StN(�d�1)
 (�d�1)

= Stf[
N(�d2)
 (�d2)

� N(�d1)
 (�d1)

]� [N(�d
�
2)

 (�d�2)
� N(�d�1)
 (�d�1)

]g

= Stf[
N(�d�1)
 (�d�1)

� N(�d�2)
 (�d�2)

]� [N(�d1)
 (�d1)

� N(�d2)
 (�d2)

]g.

Because the expected rate of return on a risky asset exceeds the risk-free rate (� > r), we have

d�1 > d1 and d�2 > d2. One can easily verify that
N(�d)
 (�d) is a decreasing and convex function in d.

It follows that25

[
N(�d�1)
 (�d�1)

� N(�d�2)
 (�d�2)

]� [N(�d1)
 (�d1)

� N(�d2)
 (�d2)

] > 0.

Therefore,

B > 0) @Rput

@�
> 0:

Appendix C: Holding-Period Expected Option Returns

We derive expected holding-period option returns in the Black-Scholes-Merton model. To save

space, we only focus on call options. The analysis of put options proceeds along the same lines.

To facilitate the notation, we consider an European call option at time 0 that matures at time

T . By de�nition, the expected return of holding the call option from time 0 to time h (h < T )

is:

Rh
call =

E0fShN(d01)� e�r(T�h)KN(d02)g
S0N(d1)� e�rTKN(d2)

where ShN(d01)� e�r(T�h)KN(d02) is the future value of the option at time h, and

d01 =
ln Sh

K
+ (r + 1

2
�2)(T � h)

�
p
T � h

d02 =
ln Sh

K
+ (r � 1

2
�2)(T � h)

�
p
T � h

d1 =
ln S0

K
+ (r + 1

2
�2)T

�
p
T

d2 =
ln S0

K
+ (r � 1

2
�2)T

�
p
T

.

25The second-order derivative of a decreasing and convex function is positive. E¤ectively [N(�d
�
1)

 (�d�1)
� N(�d�2)

 (�d�2)
]�

[N(�d1) (�d1) �
N(�d2)
 (�d2) ] is the second order derivative of

N(�d)
 (�d) with respect to d and therefore it is positive.

35



The expected future value of the option at time h can be split into two pieces:

E0fShN(d01)� e�r(T�h)KN(d02)g =

Z 1

�1
[S0e

�h� 1
2
�2h+�

p
hzN(d01)� e�r(T�h)KN(d02)]

1p
2�
e�

z2

2 dz

=

Z 1

�1
S0e

�h� 1
2
�2h+�

p
hzN(d01)

1p
2�
e�

z2

2 dz

+

Z 1

�1
�e�r(T�h)KN(d02)

1p
2�
e�

z2

2 dz.

For the �rst integral, it can be shown thatZ 1

�1
S0e

�h� 1
2
�2h+�

p
hzN(d01)

1p
2�
e�

z2

2 dz

= S0e
�h

Z 1

�1

1p
2�
e�

(z��
p
h)2

2 N(
ln S0

K
+ �h� 1

2
�2h+ �

p
hz + (r + 1

2
�2)(T � h)

�
p
T � h

)dz: (C.1)

De�ne a new variable z� = z � �
p
h. (C.1) becomes

S0e
�h

Z 1

�1

1p
2�
e�

z�2
2 N(

ln S0
K
+ (�� r)h+ (r + 1

2
�2)T

�
p
T � h

+

r
h

T � h
z�)dz�: (C.2)

Using (see Rubinstein 1984)Z 1

�1

1p
2�
e�

z�2
2 N(A+Bz�) = N(

Ap
1 +B2

),

(C.2) can be further simpli�ed as

S0e
�hN(

ln S0
K
+ (�� r)h+ (r + 1

2
�2)T

�
p
T

). (C.3)

Following the same steps, the second integral can be rewritten asZ 1

�1
�e�r(T�h)KN(d02)

1p
2�
e�

z2

2 dz = �e�r(T�h)KN(
ln S0

K
+ (�� r)h+ (r � 1

2
�2)T

�
p
T

). (C.4)

Putting (C.3) and (C.4) together, we obtain

Rh
call =

S0e
�hN(

ln
S0
K
+(��r)h+(r+ 1

2
�2)T

�
p
T

)� e�r(T�h)KN(
ln

S0
K
+(��r)h+(r� 1

2
�2)T

�
p
T

)

S0N(d1)� e�rTKN(d2)
.
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This can be further simpli�ed to

Rh
call =

e�h[S0N(d
�
1)� e�[r+(��r)HP ]TKN(d�2)]

S0N(d1)� e�rTKN(d2)
(C.5)

d�1 =
ln S0

K
+ [HP (�� r) + r + 1

2
�2]T

�
p
T

d�2 =
ln S0

K
+ [HP (�� r) + r � 1

2
�2]T

�
p
T

where HP = h=T:

Appendix D: Expected Stock Returns and Expected Op-

tion Returns

We show that expected call (put) option returns increase (decrease) with expected stock returns:
@Rcall
@�

> 0 and @Rput
@�

< 0. First, recall from (2.12):

Rcall =
e�� [StN(d

�
1)� e���KN(d�2)]

StN(d1)� e�r�KN(d2)

d�1 =
ln St

K
+ (�+ 1

2
�2)�

�
p
�

d�2 =
ln St

K
+ (�� 1

2
�2)�

�
p
�

d1 =
ln St

K
+ (r + 1

2
�2)�

�
p
�

d2 =
ln St

K
+ (r � 1

2
�2)�

�
p
�

.

Taking the derivative with respect to �

@Rcall

@�
=
�e�� [StN(d

�
1)� e���KN(d�2)] + e�� [�e���KN(d�2)]

StN(d1)� e�r�KN(d2)

where  is the probability density function of standard normal distribution. Note that we apply

the fact that the Rho of a call option is �e���KN(d�2) in deriving the above equation.
@Rcall
@�

can

be further simpli�ed:

@Rcall

@�
=

�e�� [StN(d
�
1)� e���KN(d�2)] + �KN(d�2)

StN(d1)� e�r�KN(d2)

=
�e��StN(d

�
1)

StN(d1)� e�r�KN(d2)
> 0.
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To see that the derivative is positive, notice that the denominator is just the price of call option

which is always positive, and the numerator is obviously greater than zero.

Next we show that the expected put option return is a decreasing function of the expected

stock return. Recall that the expected put option return is:

Rput =
e�� [e���KN(�d�2)� StN(�d�1)]
e�r�KN(�d2)� StN(�d1)

where d�1, d
�
2, d1, and d2 are de�ned the same as the above. Taking the derivative with respect

to � yields:

@Rput

@�
=

�e�� [e���KN(�d�2)� StN(�d�1)] + e�� [��e���KN(�d�2)]
e�r�KN(�d2)� StN(�d1)

=
��e��StN(�d�1)

e�r�KN(�d2)� StN(�d1)
< 0.

Note the denominator is the price of put option which is always positive, and therefore the ratio

itself is negative.

Appendix E: Expected Straddle Returns

We study the relation between expected straddle returns and the underlying volatility. The

expected gross return on a straddle is de�ned as

Rstraddle =
Et[max(ST �K; 0)] + Et[max(K � ST ; 0)]

Ct(� ; St; �;K; r) + Pt(� ; St; �;K; r)

=
[StN(d

�
1)� e���KN(d�2)]e

�� + [e���KN(�d�2)� StN(�d�1)]e��
StN(d1)� e�r�KN(d2) + e�r�KN(�d2)� StN(�d1)

.

We investigate the impact of volatility on expected straddle returns by taking the derivative of

Rstraddle with respect to �. It follows that

@Rstraddle

@�
=

2e��
p
�St (d

�
1)A� 2e��

p
�St (d1)B

[StN(d1)� e�r�KN(d2) + e�r�KN(�d2)� StN(�d1)]2

=
2e��

p
�Stf (d�1)A�  (d1)Bg

[StN(d1)� e�r�KN(d2) + e�r�KN(�d2)� StN(�d1)]2

where A = StN(d1)�e�r�KN(d2)+e�r�KN(�d2)�StN(�d1) and B = StN(d
�
1)�e���KN(d�2)+

e���KN(�d�2)�StN(�d�1). It is clear that the sign of @Rstraddle@�
is determined by  (d�1)A� (d1)B.
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This term can be positive or negative depending on underlying parameters.

We now show that d2 > 0 implies  (d�1)A �  (d1)B < 0 and therefore @Rstraddle
@�

< 0. First

recall from previous analysis d�1 > d1 > d2. We then have

d2 > 0) 0 <  (d�1) <  (d1). (E.1)

Moreover, note that
@A

@r
= �e�r�K[N(d2)�N(�d2)]

and therefore,

d2 > 0)
@A

@r
> 0

which further implies

0 < A < B (E.2)

by noting that B is obtained by replacing r with � in A. Putting together (E.1) and (E.2),

d2 > 0)  (d�1)A�  (d1)B < 0) @Rstraddle

@�
< 0:

Appendix F: Expected Option Returns in the HestonModel

We derive the expected return of holding a call option to expiration in the Heston (1993) sto-

chastic volatility model. The Heston (1993) model assumes that the asset price and its spot

variance obey the following dynamics under the physical measure P

dSt = �Stdt+ St
p
VtdZ

P
1

dVt = �(� � Vt)dt+ �
p
VtdZ

P
2

where � is the drift of the stock price, � is the long run mean of the stock variance, � is the rate

of mean reversion, � is the volatility of volatility, and Z1 and Z2 are two correlated Brownian

motions with E[dZ1dZ2] = �dt. The dynamics under the risk-neutral measure Q are

dSt = rStdt+ St
p
VtdZ

Q
1

dVt = [�(� � Vt)� �Vt]dt+ �
p
VtdZ

Q
2

39



where r is the risk-free rate and � is the market price of volatility risk. Again we consider the

expected return of holding a call option to expiration:

RHeston
Call (St; Vt; �) =

Et[max(ST �K; 0)]

Ct(t; T; St; Vt))
=

EP
t [max(ST �K; 0)]

EQ
t [e

�r� max(ST �K; 0)]
.

Heston (1993) provides a closed-form solution to an European call option, up to a univariate

numerical integral:

C(t; T; St; Vt) = EQ
t [e

�r� max(ST �K; 0)] = StP1 � e�r�KP2 (F.1)

where P1 and P2 are given by26

Pj =
1

2
+
1

�

Z 1

0

Re(
e�i� lnKfj(x; V; � ;�)

i�
)d� (F.2)

fj(x; V; � ;�) = eC(� ;�)+D(� ;�)V+i�x

C(� ;�) = r�i� +
a

�2
f(bj � ���i+ d)� � 2 ln[1� ged�

1� g
]g

D(� ;�) =
bj � ���i+ d

�2
[
1� ed�

1� ged�
]

g =
bj � ���i+ d

bj � ���i� d

d =
q
(���i� bj)2 � �2(2uj�i� �2)

u1 =
1

2
; u2 = �

1

2
; a = ��; b1 = �+ �� ��; b2 = �+ �:

By analogy, it can be shown that expected call option payo¤ at expiration is

EP
t [max(ST �K); 0] = e�� [StP

�
1 � e���KP �2 ] (F.3)

where

P �j =
1

2
+
1

�

Z 1

0

Re(
e�i� lnKf �j (x; V; � ;�)

i�
)d� (F.4)

f �j (x; V; � ;�) = eC(� ;�)+D(� ;�)V+i�x

26Note that x = lnS:
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C(� ;�) = ��i� +
a

�2
f(bj � ���i+ d)� � 2 ln[1� ged�

1� g
]g

D(� ;�) =
bj � ���i+ d

�2
[
1� ed�

1� ged�
]

g =
bj � ���i+ d

bj � ���i� d

d =
q
(���i� bj)2 � �2(2uj�i� �2)

u1 =
1

2
; u2 = �

1

2
; a = ��; b1 = �� ��; b2 = �:

Putting (F.1) and (F.3) together, the analytical expected holding-to-maturity call option return

in Heston model is

RHeston
Call (St; Vt; �) =

e�� [StP
�
1 � e���KP �2 ]

StP1 � e�r�KP2
: (F.5)
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Table 1: Summary Statistics for Equity Options

We report averages by moneyness category of monthly equity option returns (return), the underlying stock�s

realized volatility over the preceding month (30-day realized vol), option implied volatility (implied vol), option

volume (volume) and the option Greeks. Panel A reports on call options and Panel B on put options. We compute

monthly option returns using the midpoint of bid and ask quotes. Realized volatility is calculated as the standard

deviation of the logarithm of daily returns over the preceding month. The sample consists of options that are

at-the-money (0:95 � K=S � 1:05) and approximately one month from expiration. The sample period is from

January 1996 to July 2013.

Moneyness K=S [0:95� 0:97] (0:97� 0:99] (0:99� 1:01] (1:01� 1:03] (1:03� 1:05]
Panel A: Call Options

Return 0.054 0.080 0.111 0.119 0.100

30-day realized vol 47.06% 45.57% 44.70% 44.23% 44.97%

Implied vol 49.03% 46.94% 45.49% 44.90% 45.44%

Volume 232 306 385 430 396

Open interest 1846 1855 1798 1897 1885

Delta 0.68 0.61 0.53 0.45 0.38

Gamma 0.11 0.12 0.14 0.13 0.12

Vega 4.41 4.81 4.95 4.89 4.52

Panel B: Put Options

Return -0.137 -0.121 -0.100 -0.104 -0.087

30-day realized vol 45.86% 44.88% 45.51% 46.19% 47.62%

Implied vol 48.97% 47.29% 47.01% 47.24% 48.25%

Volume 318 359 340 278 207

Open interest 1875 1841 1672 1670 1563

Delta -0.33 -0.39 -0.47 -0.55 -0.61

Gamma 0.10 0.11 0.13 0.12 0.11

Vega 4.69 5.15 5.27 5.25 4.87
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Table 2: Summary Statistics for S&P 500 Index Options

We report averages of monthly S&P 500 index option returns (return), implied volatility (implied vol), option

volume (volume), and option Greeks by moneyness. Panel A reports on call options and Panel B reports on

put options. We compute the monthly option return using the midpoint of the bid and ask quotes. The sample

consists of S&P 500 index options (SPX) with moneyness 0:90 � K=S � 1:10 and one-month maturity. The

sample period is from January 1996 to July 2013.

Moneyness K=S [0:90�0:94] (0:94�0:98] (0:98�1:02] (1:02�1:06] (1:06�1:10]
Panel A: SPX Call Options

Return 0.027 0.057 0.060 -0.112 -0.617

Implied vol 27.30% 22.75% 19.68% 17.42% 17.28%

Volume 251 306 2029 2867 2156

Open interest 9679 11770 15236 15388 14807

Delta 0.88 0.76 0.51 0.20 0.06

Gamma 0.002 0.005 0.007 0.005 0.002

Vega 60.32 93.12 119.86 80.66 32.99

Panel B: SPX Put Options

Return -0.540 -0.406 -0.224 -0.133 -0.171

Implied vol 26.56% 22.87% 19.66% 18.20% 22.68%

Volume 3699 2662 2619 391 338

Open interest 19604 18649 14674 8992 12322

Delta -0.11 -0.23 -0.48 -0.75 -0.88

Gamma 0.002 0.005 0.007 0.006 0.003

Vega 55.13 90.56 119.80 93.61 53.04

50



Table 3: Option Portfolio Returns Sorted on Underlying Volatility

We report average equal-weighted monthly returns for option portfolios sorted on 30-day realized volatility, as

well as the return di¤erences between the two extreme portfolios. Panel A reports on call options and Panel B on

put options. Panel C reports results for option returns based on ask prices rather than the midpoint of bid and

ask quotes. Every month, all available one-month at-the-money options are sorted into �ve quintile portfolios

according to their 30-day realized volatility. Portfolio Low (High) contains options with the lowest (highest)

underlying volatilities. The sample period is from January 1996 to July 2013. Newey-West t-statistics using four

lags are reported in parentheses. Statistical signi�cance at the 10%, 5%, and 1% level is denoted by *, **, and

*** respectively.

Panel A: Call Option Portfolios

Low 2 3 4 High H-L

0:95 � K=S � 1:05 0.147 0.128 0.111 0.084 0.009 -0.138***

(-3.422)

0:975 � K=S � 1:025 0.155 0.145 0.120 0.094 0.017 -0.138***

(-3.496)

Panel B: Put Option Portfolios

Low 2 3 4 High H-L

0:95 � K=S � 1:05 -0.146 -0.153 -0.109 -0.077 -0.075 0.071**

(2.004)

0:975 � K=S � 1:025 -0.145 -0.157 -0.101 -0.065 -0.068 0.077**

(2.081)

Panel C: Using Ask Prices

Low 2 3 4 High H-L

Call Option Portfolios 0.048 0.045 0.033 0.012 -0.060 -0.108***

(-2.942)

Put Option Portfolios -0.209 -0.209 -0.165 -0.133 -0.133 0.076**

(2.302)
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Table 4: Option Portfolio Returns Double-Sorted on Expected Stock Return and Underlying Volatility

We report average equal-weighted monthly returns on option portfolios sorted on expected stock return (�) and

30-day realized volatility. Panel A reports on call options and Panel B on put options. Every month, all available

one-month at-the-money options are �rst ranked into �ve quintile portfolios according to the underlying stocks�

expected returns. Then, within each � quintile, options are further sorted into �ve portfolios based on 30-day

realized volatility. Portfolio Low (High) contains options with the lowest (highest) underlying volatility. Following

Boyer and Vorkink (2014), the expected stock return is estimated as the simple average of daily returns over the

past six month preceding the portfolio formation date. The sample period is from January 1996 to July 2013.

Newey-West t-statistics with four lags are reported in parentheses. Statistical signi�cance at the 10%, 5% and

1% level is denoted by *, **, and *** respectively.

Panel A: Call Options Low 3 3 4 High H-L

1 0.246 0.151 0.075 0.033 0.001 -0.245***

(-5.889)

2 0.190 0.148 0.117 0.085 -0.006 -0.195***

� Quintiles (-3.628)

3 0.146 0.170 0.125 0.082 0.021 -0.125***

(-2.769)

4 0.131 0.122 0.136 0.094 0.018 -0.112***

(-2.854)

5 0.154 0.106 0.101 0.066 0.038 -0.116***

(-2.823)

Panel B: Put Options Low 2 3 4 High H-L

1 -0.113 -0.079 -0.067 -0.028 -0.044 0.069*

(1.799)

2 -0.162 -0.136 -0.117 -0.102 -0.056 0.107**

(2.092)

� Quintiles 3 -0.153 -0.187 -0.162 -0.095 -0.078 0.074*

(1.762)

4 -0.154 -0.158 -0.136 -0.116 -0.133 0.021

(0.450)

5 -0.182 -0.095 -0.132 -0.102 -0.079 0.103***

(3.165)
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Table 5: Controlling for Expected Stock Returns Using the CAPM

Panel A reports average equal-weighted monthly returns on option portfolios sorted on market beta and 30-day

realized volatility. Every month, all available one-month at-the-money options are �rst ranked into �ve quintile

portfolios according to the underlying stocks�CAPM betas. Then, within each beta quintile, options are further

sorted into �ve portfolios based on 30-day realized volatility. Portfolio Low (High) contains options with the

lowest (highest) underlying volatility. The CAPM beta is estimated using daily returns over the past 30 days

preceding the portfolio formation date. Panel B reports average equal-weighted returns on option portfolios sorted

on stock idiosyncratic volatility. Idiosyncratic volatility is estimated from the market model (CAPM) using daily

returns over the past 30 days preceding the portfolio formation date. The sample period is from January 1996

to July 2013. Newey-West t-statistics with four lags are reported in parentheses. Statistical signi�cance at the

10%, 5% and 1% level is denoted by *, **, and *** respectively.

Panel A: Double Sorts on Beta and Volatility

BetanVol Low 2 3 4 High H-L

1 0.156 0.126 0.094 0.067 -0.01 -0.165***

(-3.384)

2 0.162 0.165 0.15 0.135 0.061 -0.101**

(-2.082)

Call 3 0.149 0.194 0.147 0.112 0.05 -0.099*

(-1.969)

4 0.113 0.133 0.107 0.106 0.031 -0.082**

(-2.024)

5 0.09 0.076 0.104 0.022 0.005 -0.085**

(-2.115)

BetanVol Low 2 3 4 High H-L

1 -0.15 -0.095 -0.132 -0.126 -0.121 0.029

(0.618)

2 -0.149 -0.165 -0.156 -0.101 -0.107 0.041

(0.896)

Put 3 -0.147 -0.198 -0.112 -0.069 -0.065 0.082**

(1.997)

4 -0.14 -0.122 -0.14 -0.071 -0.047 0.093**

(2.087)

5 -0.133 -0.106 -0.085 -0.067 -0.065 0.068*

(1.957)

Panel B: Sorts on Idiosyncratic Volatility

Low 2 3 4 High H-L

Call 0.156 0.13 0.119 0.083 0.021 -0.133***

(-3.245)

Put -0.157 -0.151 -0.119 -0.069 -0.077 0.080**

(2.271)
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Table 6: Fama-MacBeth Regressions

We report results for the Fama-MacBeth regressions Rit+1= 
0;t+
1;tV OL
i
t+�tZ

i
t+�; where R

i
t+1 is the option

return, V OLit is the underlying stock volatility, and Z
i
t is a vector of control variables that includes the stock�s beta

(beta), �rm size (size), book-to-market (btm), momentum (mom), stock return reversal (reversal), option skew,

volatility risk premium (vrp), the slope of the implied volatility term structure (slope), and option characteristics

such as moneyness, Delta, Vega, Gamma, and option beta. Newey-West t-statistics with four lags are reported in

parentheses. The sample consists of one-month at-the-money options. The sample period is from January 1996

to July 2013. Newey-West t-statistics with four lags are reported in parentheses. Statistical signi�cance at the

10%, 5%, and 1% level is denoted by *, **, and *** respectively.

Calls Puts

(1) (2) (3) (4) (5) (6)

Vol -0.239*** -0.277*** -0.389** 0.117** 0.125*** 0.584***
(-4.192) (-5.293) (-2.241) (2.552) (2.725) (2.911)

Beta -0.004 0.045*** 0.000 -0.034*

(-0.284) (2.714) (-0.002) (-1.789)

Size 0.000 0.001 0.000 -0.002**

(0.185) (0.829) (-0.234) (-2.285)

Btm 0.002 0.057* 0.005 -0.060*

(0.938) (1.754) (0.798) (-1.832)

Mom 0.026 0.020 -0.023 -0.013

(0.971) (0.824) (-1.252) (-0.666)

Reversal -0.188* -0.162*

(-1.940) (-1.828)

Option skew 0.065 0.474**

(0.256) (2.133)

Vrp -0.059 0.454**

(-0.327) (1.982)

Slope 0.685*** 0.648**

(3.270) (2.580)

Moneyness -0.090 -0.920

(-0.090) (-0.944)

Delta -0.069 -0.381

(-0.160) (-1.000)

Vega -0.021** 0.015

(-2.347) (1.379)

Gamma 0.011 0.156

(0.022) (0.233)

Option beta -0.002 -0.012

(-0.197) (-0.847)
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Table 7: Expected Option Returns in the Heston Model

We report expected monthly option returns in the Heston (1993) stochastic volatility model. Panel B (C) reports

expected returns on at-the-money call (put) options for di¤erent levels of the current stock variance (Vt). Panel

D reports expected returns on at-the-money straddle for di¤erent levels of the volatility risk premium (�). The

computations are based on the model parameters reported in Broadie, Chernov, and Johannes (2009), which are

calibrated from historical S&P 500 index return data. These parameters are reported in Panel A. For simplicity,

the dividend yield is set to zero. We set � equal to 0 in Panels B and C, and we set Vt equal to 0:0225 in Panel

D.

Panel A: Parameters r
p
� � � � T � t

0.045 0.15 5.33 0.14 -0.52 1/12

Panel B: Call Options Vt

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

8% 0.118 0.094 0.080 0.072 0.066 0.061 0.057 0.054 0.051

� 12% 0.257 0.202 0.172 0.153 0.139 0.128 0.120 0.113 0.107

16% 0.405 0.316 0.268 0.237 0.215 0.198 0.185 0.174 0.165

Panel C: Put Options Vt

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

8% -0.104 -0.081 -0.068 -0.060 -0.054 -0.049 -0.046 -0.043 -0.040

� 12% -0.217 -0.172 -0.146 -0.130 -0.117 -0.108 -0.100 -0.094 -0.089

16% -0.320 -0.256 -0.220 -0.195 -0.178 -0.164 -0.153 -0.144 -0.136

Panel D: Straddles �

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

� 12% 0.022 0.024 0.026 0.028 0.030 0.031 0.033 0.035 0.037

55



Table 8: Option Portfolio Returns Sorted on Alternative Volatility Measures

We report equal-weighted monthly option portfolio returns sorted on di¤erent measures of underlying volatility,

as well as the return di¤erences between the two extreme portfolios. Panel A reports on call options and Panel

B reports on put options. We consider four volatility measures: realized volatility over the previous 14 days,

realized volatility over the previous 60 days, realized volatility over the previous year, option-implied volatility

as well as a measure of conditional volatility from an AR(1) model estimated on monthly realized volatilities.

Every month, all available options are ranked into �ve quintile portfolios based on underlying volatility. Portfolio

Low (High) contains options with the lowest (highest) underlying volatilities. The sample consists of one-month

at-the-money options. The sample period is from January 1996 to July 2013. Newey-West t-statistics with four

lags are reported in parentheses. Statistical signi�cance at the 10%, 5%, and 1% level is denoted by *, **, and

*** respectively.

Low 2 3 4 High H-L

Panel A: Call Options

14-day realized vol 0.146 0.122 0.114 0.081 0.016 -0.130***

(-3.539)

60-day realized vol 0.155 0.109 0.115 0.086 0.014 -0.141***

(-3.437)

365-day realized vol 0.130 0.104 0.117 0.084 0.044 -0.086*

(-1.805)

Implied vol 0.156 0.117 0.134 0.081 -0.010 -0.166***

(-3.598)

AR(1) vol 0.117 0.107 0.112 0.080 0.018 -0.099**

(-2.142)

Panel B: Put Options

14-day realized vol -0.146 -0.139 -0.103 -0.086 -0.087 0.059*

(1.765)

60-day realized vol -0.157 -0.151 -0.109 -0.084 -0.059 0.098**

(2.488)

365-day realized vol -0.170 -0.144 -0.120 -0.071 -0.053 0.117***

(2.817)

Implied vol -0.130 -0.143 -0.118 -0.087 -0.083 0.047

(1.128)

AR(1) vol -0.171 -0.154 -0.129 -0.077 -0.014 0.157***

(3.868)
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Table 9: Option Portfolio Returns for Alternative Option Samples

We report equal-weighted monthly option portfolio returns sorted on 30-day realized volatility, as well as the

return di¤erences between the two extreme portfolios. Di¤erent option samples are used: two-month at-the-money

(ATM) options, one-month in-the-money (ITM) options, two-month ITM options, one-month out-of-the-money

(OTM) options, and two-month OTM options. ATM options are de�ned by moneyness 0:95 � K=S � 1:05, ITM
options are de�ned by moneyness 0:80 � K=S < 0:95 for calls and 1:05 < K=S � 1:20 for puts, and OTM options

are de�ned by moneyness 1:05 < K=S � 1:20 for calls and 0:80 � K=S < 0:95 for puts. Returns are reported

as raw returns for the relevant horizons. The sample period is from January 1996 to July 2013. Newey-West

t-statistics with four lags are reported in parentheses. Statistical signi�cance at the 10%, 5%, and 1% level is

denoted by *, **, and *** respectively.

Low 2 3 4 High H-L

Panel A: Call Options

Two-month ATM 0.144 0.135 0.112 0.035 -0.027 -0.171***

(-3.037)

One-month ITM 0.053 0.060 0.042 0.026 -0.025 -0.078***

(-3.678)

Two-month ITM 0.089 0.084 0.068 0.027 -0.067 -0.156***

(-5.224)

One-month OTM 0.055 0.049 0.077 0.048 -0.066 -0.121**

(-2.214)

Two-month OTM 0.132 0.088 0.098 0.022 -0.054 -0.186**

(-2.361)

Panel B: Put Options

Two-month ATM -0.207 -0.149 -0.118 -0.079 -0.056 0.151***

(3.203)

One-month ITM -0.091 -0.069 -0.052 -0.043 -0.034 0.057***

(2.933)

Two-month ITM -0.127 -0.090 -0.055 -0.048 -0.023 0.105***

(3.625)

One-month OTM -0.309 -0.217 -0.193 -0.090 -0.131 0.178***

(2.759)

Two-month OTM -0.276 -0.197 -0.188 -0.118 -0.099 0.177**

(2.037)
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Table 10: Delta-Hedged Option Returns

Panel A reports average monthly returns (in percent) for delta-hedged option portfolios sorted on underlying

volatility. We use the sample from Table 3. Every month options are sorted into �ve quintile portfolios based

on underlying volatility and the delta-hedged option return is computed over the following month according

to Goyal and Saretto (2009) with no rebalancing. We report both equal-weighted (EW) and volume-weighted

(VW) portfolio returns. The sample period is from January 1996 to July 2013. Newey-West t-statistics with

four lags are reported in parentheses. Statistical signi�cance at the 10%, 5%, and 1% level is denoted by *, **,

and *** respectively. Panel B reports expected static delta-hedged returns in the Black-Scholes-Merton model

calculated according to equation (6.4) for a hypothetical 1-month call option (returns are stated in percent). We

consider di¤erent values of the moneyness K=S, the expected stock return �; and the underlying volatility �. The

annualized interest rate is assumed to be 3%.

Panel A: Delta-Hedged Option Returns

Low 2 3 4 High H-L

EW -0.292 -0.325 -0.356 -0.231 -0.721 -0.429**

Calls (-2.013)

VW -0.180 -0.359 -0.380 -0.205 -0.863 -0.683**

(-2.396)

EW 0.027 -0.067 0.046 0.003 -0.484 -0.511***

Puts (-2.790)

VW 0.007 -0.296 0.001 0.004 -0.616 -0.623**

(-2.260)

Panel B: Delta-Hedged Option Returns in the Black-Scholes-Merton Model

�n� 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.05 0.191 0.096 0.064 0.048 0.038 0.032 0.027 0.024 0.021

0.07 0.764 0.384 0.256 0.192 0.154 0.128 0.109 0.096 0.085

K/S=100/100 0.09 1.714 0.864 0.577 0.432 0.346 0.288 0.246 0.215 0.191

0.11 3.039 1.536 1.026 0.769 0.615 0.512 0.438 0.383 0.340

0.13 4.734 2.400 1.603 1.203 0.962 0.801 0.685 0.599 0.531

�n� 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.05 0.046 0.066 0.053 0.043 0.035 0.030 0.026 0.023 0.020

0.07 0.192 0.267 0.215 0.172 0.142 0.120 0.104 0.091 0.081

K/S=100/95 0.09 0.446 0.605 0.485 0.388 0.320 0.270 0.234 0.206 0.183

0.11 0.820 1.085 0.866 0.692 0.569 0.482 0.416 0.366 0.326

0.13 1.325 1.710 1.360 1.084 0.891 0.754 0.651 0.572 0.510

�n� 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.05 0.039 0.066 0.055 0.044 0.037 0.031 0.027 0.024 0.021

0.07 0.152 0.261 0.219 0.178 0.147 0.125 0.108 0.095 0.085

K/S=100/105 0.09 0.331 0.583 0.491 0.399 0.331 0.282 0.244 0.215 0.192

0.11 0.569 1.028 0.870 0.709 0.589 0.500 0.434 0.382 0.341

0.13 0.861 1.594 1.355 1.106 0.919 0.782 0.678 0.597 0.533
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Table 11: Option Returns, Stock Returns and Option-Implied Stock Returns

The �rst row of each panel repeats the benchmark results from Table 3. The second and third rows report

the average return and volatility of stocks underlying these option portfolios. The fourth row computes expected

option returns using the Black-Scholes-Merton expected option return formula given the stock data in rows 2 and

3. The last row reports the option-implied expected stock return using the data in rows 1 and 3 by inverting the

Black-Scholes-Merton expected option return formula. The average option returns in the �rst row are monthly for

consistency with Table 3. Stock returns, stock volatilities and option implied expected stock returns are annual.

The sample period is from January 1996 to July 2013.

Panel A: Call Options

Low 2 3 4 High

Average option return 0.147 0.128 0.111 0.084 0.009

Average stock return 0.108 0.132 0.132 0.108 0.048

Average stock volatility 0.209 0.308 0.403 0.525 0.813

Expected option return 0.145 0.130 0.101 0.060 0.011

Option-implied expected stock return 0.106 0.127 0.139 0.136 0.041

Panel B: Put Options

Low 2 3 4 High

Average option return -0.146 -0.153 -0.109 -0.077 -0.075

Average stock return 0.108 0.132 0.132 0.096 0.048

Average stock volatility 0.214 0.313 0.408 0.532 0.827

Expected Option Return -0.124 -0.109 -0.083 -0.040 -0.005

Option-implied expected stock return 0.120 0.172 0.162 0.153 0.225
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Table 12: Regressions of Index Option Returns on Index Volatility

Using a pooled sample of S&P 500 index options (SPX) with 0:9 � K=S � 1:1 and one-month maturity, we

report results for the regression of monthly SPX option returns on lagged index volatility:

Rit+1 = constant+ �1V OL
i
t + �2Moneyness

i
t + �3R

I
t + �

where Rit+1 is the option return from month t to month t + 1, RIt is the S&P 500 index return in month t and

V OLt is the index volatility. Columns (1)-(4) consider four index volatility measures: realized volatility over the

previous 14 days, realized volatility over the preceding month, realized volatility over the previous 60 days, and

option-implied volatility. Columns (5)-(8) consider the same regressions using only liquid SPX options, consisting

of calls with 0:98 � K=S � 1:1 and puts with 0:90 � K=S � 1:02. The sample period is from January 1996 to

July 2013. Newey-West t-statistics with four lags are reported in parentheses.

Panel A: SPX Calls Full sample Only liquid options

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept 4.091 4.178 4.285 7.113 9.273 9.211 9.128 10.849

(5.988) (6.360) (6.676) (14.025) (9.440) (9.311) (9.154) (11.931)

14 day realized vol -0.460 -0.194

(-1.913) (-0.548)

30 day realized vol -0.921 -0.858

(-3.781) (-2.516)

60 day realized vol -1.456 -1.617

(-4.778) (-3.767)

implied vol -3.697 -4.444

(-5.571) (-4.473)

Adjusted R-square 1.13% 1.22% 1.37% 2.01% 1.67% 1.73% 1.90% 2.54%

Panel B: SPX Puts Full sample Only liquid options

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept -4.243 -4.219 -4.216 -4.499 -6.324 -6.139 -6.069 -6.771

(-8.418) (-8.230) (-8.155) (-9.067) (-8.971) (-8.622) (-8.444) (-8.704)

14 day realized vol 2.106 2.664

(3.918) (3.881)

30 day realized vol 1.393 1.887

(2.951) (3.140)

60-day realized vol 1.070 1.582

(2.619) (2.978)

implied vol 0.263 0.920

(0.652) (1.732)

Adjusted R-square 2.70% 1.73% 1.46% 1.13% 3.18% 2.06% 1.76% 1.27%
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Figure 1: Option Leverage as a Function of Volatility in the Black-Scholes-Merton Model
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Notes: We plot expected monthly returns on a call option, a put option and the underlying stock in the

Black-Scholes-Merton model. We set the expected annual return on the stock � equal to 10% and the risk-free

rate r equal to 3%: Options are at-the-money (ATM) and have a maturity of 1 month.
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Figure 2: Expected Option Returns in the Black-Scholes-Merton Model
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Pan el  C: Cal l , K/S= 100/100
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Pan el  D: Pu t,  K/S= 100/100
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Notes: We plot expected option returns in the Black-Scholes-Merton model against volatility (�) and time-

to-maturity (�). In all computations, we set the expected return on the stock � equal to 10% and the risk-free

rate r equal to 3%. We set the strike price (K) equal to 100 and the stock price (S) equal to either 95, 100 or

105. Returns are reported as raw returns for the relevant horizons.
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Figure 3: Cumulative Losses and Pro�ts on the Long-Short Portfolios

1998 2000 2002 2004 2006 2008 2010 2012

D
ol

la
rs

­3000

­2000

­1000

0
Cumulative Losses on the Long­Short Call Portfolio

1998 2000 2002 2004 2006 2008 2010 2012

D
ol

la
rs

0

500

1000

1500

2000
Cumulative Profits on the Long­Short Put Portfolio

Notes: We plot the cumulative losses and pro�ts from investing in the long-short portfolios documented in

Table 3. We assume that an investor invests $100 in the long-short portfolio every month.
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Figure 4: Expected Option Returns in the Heston Model
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Panel C: ATM Call, =­0.5
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Panel D: ATM Put, =­0.5
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Notes: We plot expected option returns in the Heston model against volatility (�) and time-to-maturity (�)

for at-the-money (ATM) options. We use the parameter values in Panel A of Table 8, and set the expected stock

return � equal to 9:91% as in Broadie, Chernov and Johannes (2009). The volatility risk premium (�) is either 0

(Panels A and B) or -0.5 (Panels C and D). Returns are reported as raw returns for the relevant horizons.
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Online Appendix
Table A.1: Straddle Portfolio Returns Sorted on Volatility

We report average monthly returns for �ve straddle portfolios sorted on the volatility of the underlying stock. We

use three samples of straddles based on moneyness: 0:95 � K=S � 1, 0:875 � K=S < 0:95, and 0:80 � K=S <
0:875. Every month, we select call and put options on the same stock with the same strike price and maturity

to form straddles. These straddles are then sorted into �ve quintile portfolio based on the realized volatility over

the preceding month. Portfolio Low (High) contains straddles with the lowest (highest) underlying volatility.

We report equal-weighted and volume-weighed portfolio returns. Straddle volume is computed as the average

volume for the call and put options that form the straddle. The sample period is from January 1996 to July 2013.

Newey-West t-statistics with four lags are reported in parentheses. Statistical signi�cance at the 10%, 5%, and

1% level is denoted by *, **, and *** respectively.

Panel A: 0:95 � K=S � 1
Low 2 3 4 High H-L

Equal-weighted 0.028 0.010 0.022 0.014 -0.026 -0.054***

(-2.904)

Volume-weighted 0.026 -0.006 0.005 0.014 -0.037 -0.063**

(-2.139)

Panel B: 0:875 � K=S < 0:95
Equal-weighted 0.022 0.034 0.025 0.015 -0.033 -0.055***

(-3.249)

Volume-weighted 0.013 0.044 -0.010 0.003 -0.044 -0.057**

(-2.522)

Panel C: 0:80 � K=S < 0:875
Equal-weighted 0.020 0.013 0.014 0.000 -0.065 -0.085***

(-4.972)

Volume-weighted 0.021 0.001 -0.005 -0.021 -0.046 -0.067**

(-2.328)
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Table A.2: Option Portfolio Returns Using Di¤erent Weighting Methods

We report long-short monthly returns for portfolios sorted on 30-day realized volatility, using di¤erent option

samples. Alternative weighting methods are used: volume weighted, open interest weighted, and option value

weighted. Option value is de�ned as the product of option price and option open interest. The sample period is

from January 1996 to July 2013. Newey-West t-statistics with four lags are reported in parentheses. Statistical

signi�cance at the 10%, 5%, and 1% level is denoted by *, **, and *** respectively.

Volume Weighted Open Interest Weighted Option Value Weighted

Panel A: Call Options

One-month ATM -0.182*** -0.133*** -0.107**

(-3.557) (-3.094) (-2.352)

Two-month ATM -0.204** -0.235*** -0.216***

(-2.401) (-3.640) (-2.893)

One-month ITM -0.113*** -0.060** -0.066***

(-3.978) (-2.512) (-2.652)

Two-month ITM -0.210*** -0.188*** -0.191***

(-3.925) (-4.334) (-4.456)

One-month OTM -0.171** -0.059 -0.137*

(-2.145) (-0.897) (-1.747)

Two-month OTM -0.242** -0.292** -0.438***

(-1.992) (-2.422) (-2.985)

Panel B: Put Options

One-month ATM 0.073 0.089* 0.052

(1.433) (1.869) (1.061)

Two-month ATM 0.081 0.187*** 0.170**

(0.971) (2.969) (2.497)

One-month ITM 0.035 0.099*** 0.090***

(1.094) (3.679) (2.934)

Two-month ITM 0.154*** 0.134*** 0.134***

(3.451) (2.857) (2.896)

One-month OTM 0.268*** 0.278*** 0.274***

(3.448) (4.139) (3.481)

Two-month OTM 0.310*** 0.307*** 0.349***

(3.047) (2.932) (3.706)

66



Table A.3: Holding Period Option Returns Sorted on Underlying Volatility

We report one-month holding period returns of options sorted on underlying volatility. On the �rst trading

day of each month, we collect options that expire in the following month and compute the returns of holding

these options to the month end. ATM options are de�ned by moneyness 0:95 � K=S � 1:05, ITM options are

de�ned by moneyness 0:80 � K=S < 0:95 for calls and 1:05 < K=S � 1:20 for puts, and OTM options are de�ned

by moneyness 1:05 < K=S � 1:20 for calls and 0:80 � K=S < 0:95 for puts. The sample period is from January

1996 to July 2013. Newey-West t-statistics with four lags are reported in parentheses. Statistical signi�cance at

the 10%, 5%, and 1% level is denoted by *, **, and *** respectively.

Panel A: Call Option Portfolios

Low 2 3 4 High H-L

1-month ATM 0.010 0.024 0.008 0.005 -0.047 -0.056**

(-2.046)

1-month ITM 0.002 0.003 0.003 -0.007 -0.051 -0.053***

(-2.931)

1-month OTM 0.056 0.032 0.030 0.008 -0.039 -0.095**

(-2.482)

Panel B: Put Option Portfolios

Low 2 3 4 High H-L

1-month ATM -0.082 -0.069 -0.047 -0.037 -0.027 0.055**

(2.016)

1-month ITM -0.044 -0.021 -0.013 -0.018 0.007 0.051**

(2.537)

1-month OTM -0.159 -0.099 -0.051 -0.057 -0.048 0.111***

(2.915)
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Table A.4: Fama-MacBeth Regressions Using Delta-Hedged Option Returns

We report results for the Fama-MacBeth regressions Rit+1= 
0;t+
1;tV OL
i
t+�tZ

i
t+�; where R

i
t+1 is the delta

hedged option return as in Goyal and Saretto (2009), V OLit is the underlying stock volatility, and Z
i
t is a vector

of control variables that includes volatility risk premium (vrp), the stock�s beta (beta), �rm size (size), book-to-

market (btm), momentum (mom), stock return reversal (reversal), and option characteristics such as moneyness,

Delta, Vega, Gamma, and option beta. The sample consists of one-month at-the-money options. The sample

period is from January 1996 to July 2013. Newey-West t-statistics with four lags are reported in parentheses.

Statistical signi�cance at the 10%, 5%, and 1% level is denoted by *, **, and *** respectively.

calls Puts

(1) (2) (3) (4) (5) (6)

Intercept -0.001 0.132*** 0.129*** 0.003* 0.015 0.017

(-0.351) (3.604) (3.524) (1.906) (0.480) (0.555)

Vol -0.009*** -0.018*** -0.010*** -0.018***
(-3.115) (-6.204) (-4.097) (-6.124)

Ivol -0.021*** -0.020***

(-5.689) (-5.494)

Vrp 0.039*** 0.038*** 0.033*** 0.032***

(11.049) (11.036) (10.680) (10.641)

Beta 0.000 -0.001** 0.000 -0.001

(-0.054) (-1.981) (0.725) (-1.201)

Size 0.000 0.000 0.000 0.000

(-1.300) (-1.389) (-1.231) (-1.292)

Btm 0.000 0.000 0.000 0.000

(-0.088) (-0.048) (0.321) (0.334)

Mom 0.001 0.001 0.000 0.000

(0.489) (0.507) (0.353) (0.326)

Reversal -0.017*** -0.014*** -0.015*** -0.013***

(-3.370) (-2.888) (-3.458) (-2.986)

Moneyness -0.112*** -0.111*** -0.011 -0.016

(-3.600) (-3.549) (-0.333) (-0.484)

Delta -0.028*** -0.027*** -0.005 -0.008

(-2.789) (-2.707) (-0.617) (-0.928)

Vega 0.000 0.000 0.000 0.000

(0.416) (0.405) (0.080) (0.042)

Gamma 0.008 0.008 0.007 0.006

(1.049) (1.095) (0.722) (0.692)

Option beta -0.000* -0.000* 0.000 0.000

(-1.872) (-1.696) (0.900) (0.548)
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