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Abstract
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price process. We then introduce investors and characterize the functional structure of the
representative agent that supports equilibrium prices. Here marginal utility must be that of
the equilibrium stochastic discount function and we conclude that volatility is stochastic in
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1 Introduction

Empirical studies document extensively that the volatility of asset returns1 evolves randomly

over time; the theoretical literature attributes this to a variety of explanations (stochastic

nature of dividends, of the information process, heterogeneous beliefs). A foundation of

financial economics is the stochastic discount factor (a.k.a. pricing kernel); one may expect

stochastic volatility of prices to reflect itself in the stochastic discount factor but this has

not been studied, so far. Our goal is to study its properties and how these are derived from

economic fundamentals.

The paper studies a claim on terminal firm value in a continuous-time version of the

discrete-time economy of Rubinstein (1976). The underlying price processes of aggregate

endowment and firm value follow a two-dimensional (bivariate) geometric Brownian, i.e.

volatility of the underlying economic variables is constant. The aggregate endowment drives

the state-price process (pricing kernel) and enters into the price process of the firm claim.

Our analysis proceeds in two steps. In the first step we study structural properties of

the state-price process and relate stochastic volatility to a power function of the aggregate

endowment and equivalently to a CRRA type preference structure of the so-called (price

supporting) representative agent. In the second step we study in detail aggregation and relate

that CRRA property to homogeneity/heterogeneity in risk-preferences of two agents with

CRRA preferences. This allows us to conclude here that heterogeneity in risk preferences

leads to stochastic volatility.

Our paper contributes in many ways to the literature. Our first contribution consists

in tieing together insights from the single-period pricing literature with those from the

continuous-time pricing literature2. First of all, starting with Heston (1993), the continuous-

time option pricing literature showed that stochastic volatility of the underlying stock price

process leads to the so-called implied volatility “smile” (a stylized fact of options prices).

1Volatility describes the standard deviation of stochastic returns for financial assets. Stochastic volatility
means that volatility is driven by a process in addition to the process that drives stock returns; it is different
from time-dependent and state-dependent volatility.

2We focus here on options on firm value. Analogously, we could study options on terminal endowment;
for simplicity we do not work out the details throughout this paper. From an econometrician’s viewpoint,
our analysis links to latent variables in state-price processes, see, e.g. Chabi-Yo et al. (2007).
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Second, Merton (1973) and Rubinstein (1976) proved in single-period models that the Black-

Scholes formula holds, when CRRA agents are homogeneous in their risk-preferences; Ben-

ninga and Mayshar (2000) showed the converse, i.e. heterogeneity in CRRA leads to the

“smile” pattern.

Our second contribution consists in clarifying the structure of the representative agent.

It is well known, see Rubinstein (1974) and Constantinides (1982), that equilibrium prices

can be represented through a representative agent, i.e. a representative agent can be defined

that leads to equilibrium prices. These types of analysis ignore that the price-setting repre-

sentative agent should not just support the prices over a given fixed time-period, but that

it should support the entire price dynamics; put differently, this ignores that the functional

form of the representative agent may depend on the time-horizon under consideration. When

volatility is stochastic, our analysis implies that heterogeneous CRRA agents cannot aggre-

gate to a representative agent with CRRA preferences. Our paper thereby highlights the

importance of being careful with assumptions about the utility functions for representative

agents and to consider temporal consistency.

Finally, our third and most important contribution consists in broadening our under-

standing of the stochastic nature of volatility. The literature attributes stochastic volatility

to the stochastic nature of dividends in representative agent economies, see, e.g. Cochrane

et al. (2008), Bhamra and Uppal (2011) and references therein, to the stochastic nature of

the information process (Admati (1985), Brock and Hommes (1997)), and to the impact of

heterogeneous beliefs, see, e.g., Detemple and Murthy (1994), Zapatero (1998) and Li (2007).

Our paper, provides an alternative explanation related to heterogeneity: here, we attribute

stochastic volatility to the aggregation of heterogeneous risk-preferences.

In the next section we introduce the process structure of the underlying economic vari-

ables, the firm claim and the so-called representative agent. The third section links the

functional form of the discount function to stochastic volatility of the firm price processes.

In the fourth section we study equilibrium in an exchange economy where agents have CRRA

preferences and link stochastic volatility to the utility of the representative agent and ulti-

mately to heterogeneity in agent’s risk preferences. The paper concludes with section 5. All

proofs are postponed to the appendix.
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2 Setup

This section introduces the main objects of study: the pricing system, the discount function,

and the firm claims. Throughout this paper we assume there is a single perishable consump-

tion good and all units are expressed in terms of that good. Time 0 is today; at time T > 0

all economic activity ceases.

2.1 State-price Processes and Functions

There is a long tradition to study price processes in terms of aggregate consumption; typ-

ically, a representative agent with an exogenously specified utility function is invoked and,

in addition, the aggregate consumption stream is exogenously specified. Within such anal-

ysis there is no distinction between aggregate endowment and aggregate consumption. At

this stage, however, we do not want to depend on a specification of agents’ preferences or

consumption.

We only specify exogenously the so-called aggregated endowment process Y , observable

at all times: we assume Y0 = 1 and that it evolves over time 0 ≤ t ≤ T according to the

stochastic differential equation

dYt = µY Ytdt+ σY YtdW
Y
t ; (1)

here, µY and σY > 0 are constants that are known to agents and (W Y
t )t denotes a standard

Wiener process on a suitable probability space (Ω,F , P ).

This process is also known as geometric Brownian motion with constant volatility σY .

Therefore, we believe this is a good starting point to study the impact of heterogeneity on

price processes.

It is well known, see e.g. Duffie (2001) that an arbitrage-free linear pricing system can

be supported by a state-price process (Mt)0≤τ≤T , i.e. the time t price of a claim to any

Markovian payout process (Πτ )t≤τ≤T of the consumption good is

1

Mt

E

[∫ T

t

ΠτMτdτ

∣∣∣∣Πt, Yt

]
. (2)

We assume that the market is (dynamically) complete in claims on the aggregate con-

sumption stream. This is warranted, e.g., when a riskfree security and a claim on the
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endowment can be traded. Then, the state-price process is unique.

Throughout this paper we study the following class of state-price processes that allows

us to separate the impact of time and aggregate endowment:

Definition 1 (Time-separable State-price Process) 3

A state-price function (SPF, a.k.a. discount function) is a strictly positive function m on

the positive real line with the property that P -a.s. Mt = γ(t) ·m(Yt) for all 0 ≤ t ≤ T for a

suitable, strictly positive function γ on the time interval [0, T ], and subject to “appropriate”

technical conditions.

2.2 The Firm Price

Throughout, we study a claim on an asset that is (partially) correlated with the aggregate

endowment. We refer to the underlying asset as the firm book value and denote it by F . The

current book value F is observable at all times and evolves over time 0 ≤ t ≤ T according

to the stochastic differential equation (a.k.a. geometric Brownian motion)

dFt = µFFtdt+ σFFtdW
F
t , (3)

where (W F
t )t is standard Wiener processes on the probability space (Ω,F , P ), F0 = 1, and

µF as well as σF > 0 are constants. The instantaneous correlation between the Wiener

processesW F andW Y is constant and we denote it by −1 ≤ κ ≤ 1. Similar to the aggregate

endowment process Y we model the firm book value F through geometric Brownian motion

and exclude stochastic volatility in fundamentals.

For simplicity, we focus on a claim that pays only at time T the book value of the firm;

nothing4 is paid before time T . We refer to the shadow price St of this claim on firm book

value as the firm price at time t; this defines a stochastic process S = (St)0≤t≤T . The firm

price is a function of current time t, book value Ft and endowment Yt, i.e. St = S(t, Ft, Yt).

3The “appropriate” technical conditions ensure sufficient differentiability and that expecta-
tion/differentiation can be exchanged. We refrain from working this out.

4A claim that pays a stream of the firm book value at all times could be valued using the state-price
process. Studying such a claim would be more sensible but would also considerably complicate our analysis.
To illustrate our qualitative insights we focus on a claim that pays only at a single date.
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The pricing property of the state-price process, equation (2), implies that

S(t, f, y) = f
γ(T )

γ(t)

E
[
m(yZY

tT )Z
F
tT

]
m(y)

, (4)

where

lnZY
tT =

(
µY − σ2

Y

2

)
(T − t) + σY

√
T − tUY , lnZF

tT =

(
µF − σ2

F

2

)
(T − t) + σF

√
T − tUF ,

and UY , UF are standard normal random variables that have correlation κ with each other.

Note that YT
d
= YtZ

Y
tT and FT

d
= FtZ

F
tT , where

d
= denotes equality in distribution.

For future reference throughout the remainder of this paper we denote by ϵS the elasticity

of the firm price w.r.t. the current aggregate endowment, i.e.

ϵS(t, f, y) =
∂S

∂y

y

SF

. (5)

Equation (4) shows that ∂S
∂f

is linear in f ; therefore, ϵS does not depend on current book

value f and for simplicity of exposition we drop the dependence of ϵS on firm (book) value

f throughout this paper. In addition, we define a function VS by setting

VS(t, y) = σ2
F (1− κ2) + (σY ϵS(t, y) + κσF )

2 . (6)

3 The Volatility Process

This section derives the volatility price process of the firm claim and studies its properties.

We are particularly interested in the properties of the volatility process and the functional

form of the SDF, equivalently of the structure of the relative risk aversion function ρ̄ of the

representative agent. (The next section will study equilibrium and characterize ρ̄ based on

fundamentals of an exchange economy.)

3.1 Characterization

Itô’s lemma shows that the firm price dynamics is

dSt = µS(t, Ft, Yt)SFtdt+
∂S

∂f
σFFtdW

F
t +

∂S

∂y
σY YtdW

Y
t , (7)

for a suitable drift function µS. Rewriting the description in equation (7), the Appendix

shows:

6



Theorem 2 There is a standard Wiener process W̃ F and a function µF such that the dy-

namics of the firm price process is dSt = µS(t, Ft, Yt)Stdt+
√
VS(t, Yt)StdW̃

F
t ;

Because W̃ F is a standard Wiener processes, the term VS(t, Yt) captures what is com-

monly referred as volatility5; note that it is a (stochastic) process driven by the aggregate

endowment. There are two contributions to stock price volatility VS: the volatility of book

value enters through a constant level σF , because the firm price S depends linearly on firm

book value, see equation (4). The second contribution to volatility is through the aggre-

gate endowment via (σY ϵS + κσF )
2; here, the current endowment y = Yt enters (indirectly)

through the elasticity ϵS; therefore, this will be our main object of study.

Itô’s lemma allows us to characterize the dynamics of volatility VSt = VS(t, Yt) as a

stochastic process:

dVSt =

(
∂VS
∂y

+
1

2

∂2VS
∂y2

)
dt+ σY

(
∂VS
∂y

Yt

)
dW Y

t . (8)

Our focus is on the second term, in particular on the function y 7→ ∂VS

∂y
y. The literature distin-

guishes three forms of non-constant volatility: (1) time-dependent volatility where volatility

is only a function of time; (2) state-dependent volatility, where the stochastic movement of

volatility over time that is driven by the underlying asset; (3) stochastic volatility, where the

stochastic movement of volatility over time that is not driven by the underlying asset, i.e. it

must be driven by a second stochastic process. The time-dependence of ϵS may lead to time-

varying volatility, but firm price volatility is varying stochastically6 only if ϵS is not constant

in y. To define stochastic volatility we focus on the dependence of ϵS on the aggregated

endowment. This leads us naturally to the following definition of stochastic volatility:

Definition 3 7 We say that volatility of the firm price process is stochastic, if there is a

time point 0 ≤ t < T and an open interval such that the function ϵS(t, ·) is not constant on

that interval. Otherwise, we say that firm volatility is not stochastic.

5Formally, VS is variance, but it is a common convention to refer to it as volatility.
6The term ϵS does not depend on firm book value and so the firm price cannot exhibit state-dependent

volatility.
7The definition is a dichotomy; note that for volatility that is not stochastic, the elasticity ϵS and thus

the volatility VS can only depend on time t.
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3.2 The Discount Function and the Representative Agent’s Risk-
aversion

The state-price function m and thus the pricing system can be supported by a representative

agent with a suitable utility function ur, i.e. there exists a function ur with the property

that m = λu′r for a suitable constant λ. We denote by ρ̄ the relative risk aversion function

of the representative agent.

In financial economics, it is common to postulate that the representative agent has pref-

erences that exhibit constant relative risk aversion, i.e. the relative risk aversion function ρ̄

is constant; this means that the representative agent’s utility function ur is a power func-

tion on the entire positive real line, i.e. there exist suitable8 constants α, β, λ such that the

state-price function m and the function ur are for all y > 0

m(y) = αyβ, or equivalently ur(y) =
α

(β + 1)λ
yβ+1 + const.

We calculate using well-known formulas for (bivariate) lognormal random variables:

S(t, f, y) = f
γ(T )

γ(t)
E
[
ZF

tT

(
ZY

tT

)β]
= f

γ(T )

γ(t)
exp

((
µF + βµY +

σ2
Y

2
β(β + 1) + 2βκσFσY

)
(T − t)

)
. (9)

There are then two ways to see that the firm price process exhibits constant volatility.

The first notes that the current book value f enters linearly into the price equation (9), while

the other terms are time-dependent scaling constants; therefore, volatility is given by that

of the firm book price process, equation (3). The second way calculates the elasticity ϵF of

the firm price w.r.t. aggregate endowment based on equation (9) and finds ϵS = 0 for all

t, f ; then, equation (6) implies that volatility is not stochastic, that it is state-independent

and also time-invariant: VS = σ2
F for all t, y. Overall, we conclude both ways that the usual

assumption of a representative agent with CRRA preferences leads to constant volatility.

Let us now consider the case where the representative agent does not have CRRA pref-

erences. For illustration, let us assume for a moment that the state-price function is linear

in the endowment y, i.e. utility function of the representative agent is equal to quadratic

8Additional restrictions need to be imposed that we refrain from working out here.
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utility9, i.e. for a suitable constants a > 0, λ we have for all y > 0:

m(y) = u′r(y) = a− y, or equivalently ur(y) = − 1

2λ
(a− y)2 + const. (10)

We calculate then u′′r(y) = a, such that we find based on equation (4) that

S(t, f, y) = f
γ(T )

γ(t)

aE
[
ZF

tT

]
− yE

[
yZY

tTZ
F
tT

]
a− y

= f
γ(T )

γ(t)
exp

{(
µF − σ2

F

2

)
(T − t)

} a− y exp
{(
µY − σ2

Y

2
+ κσFσY

)
(T − t)

}
a− y

.

This shows that the stock price depends non-linearly on the current aggregate endowment

y = Yt; in particular the curvature of the y functional dependence in S is not vanishing.

Therefore, we expect volatility to depend on the current endowment. To see this impact

more clearly, we calculate the elasticity

ϵS(t, y) = −
ay
(
exp

{(
µY − σ2

Y

2
+ κσFσY

)
(T − t)

}
− 1
)

(a− y)
(
a− y exp

{(
µY − σ2

Y

2
+ κσFσY

)
(T − t)

}) . (11)

This function is not constant in y; therefore, in equation (6) the volatility VS depends on y

and in accordance with Theorem 4, we say that volatility is stochastic.

Getting back to the general case, the appendix shows that

ϵS(t, y) = (µY − κσFσY )(T − t) ·
(
y
∂ρ̄

∂y

)(
eµY (T−t)y

)
, (12)

up to terms of order higher than quadratic in σY . For illustration, let us assume for a

moment that this description is accurate. Two insights can be gained from it. First, we note

that properties of the elasticity ϵS and thereby ultimately the process structure of stochastic

volatility are determined by the function y 7→ y ∂ρ̄
∂y
, i.e. essentially the stochastic volatility

process is characterized by the first derivative of the representative agent’s risk aversion

function.

Second, this has implications on the link between stochastic volatility and the functional

form of the SPF (the representative agent’s risk aversion function). To see this, we recall from

9Major disadvantage of the quadratic utility function are (1) that it is decreasing for y > a; one may
assume a sufficiently large and focus on 0 < y < a to address this; (2) that the risk aversion function is
increasing for y < a although the literature usually focuses on decreasing risk aversion functions. Despite
these shortcomings we use this utility function for a moment, purely for illustrative purposes.
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the previous subsection that CRRA preferences for the representative agent is a sufficient

condition for constant volatility, while our example of quadratic preferences suggests that this

may be a necessary condition, too. Equation 12 suggests that volatility will be stochastic,

whenever the function ∂ρ̄
∂y

is not constant (zero); this in turn holds only for CRRA preferences.

The appendix shows that it is a necessary condition, indeed. Therefore, we conclude:

Theorem 4 Firm price volatility is not stochastic if and only if the representative agent has

constant relative risk aversion preferences, respectively, if and only if the SPF is a power

function.

The early option pricing literature provided successful motivations for the Black-Scholes

call option pricing formula in single-period setups: Merton (1973) showed that it holds for

call options on aggregate endowment in a single-period setup where the representative agent

has CRRA preferences and the terminal endowment is lognormal distributed, and Rubin-

stein (1976) extended this affirmative result to call options on firm value when the terminal

firm and endowment claim are bivariate lognormal random variables. Later, Brennan (1979)

revisited the original framework in Merton (1973) that considered call options on the endow-

ment and showed that the CRRA preference structure is not only sufficient but that it is also

necessary for the Black-Scholes formula to hold. Since then, the option pricing literature

has focused on continuous-time trading (hedging) and pricing models of options; it has also

come up with elaborate descriptions of asset price processes in so-called stochastic volatility

models that describe volatility through an additional process. The derived call option prices

from no-arbitrage arguments support the so-called implied volatility smile feature observed

in price of traded options. Benninga and Mayshar (2000) linked this back to preferences of

investors; interestingly, in an extension of Merton (1973) to an economy where agents have

heterogeneous CRRA preferences, they showed that the Black-Scholes formula is no longer

valid and reproduce qualitatively the empirical observed implied volatility smile. Theorem

4 ties together these different strands of the literature.
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4 Economic Foundations

The previous section characterized the functional form of the SPF (risk aversion function of

the representative agent) and linked it to stochastic volatility; however, it did not endogenize

the risk aversion function. To close this gap, this section extends the setup of the previous

section to a pure exchange economy populated by two agents with power utility. This allows

us to link the power function property to homogeneity in agent’s risk preferences.

4.1 The Economy

We study a continuous-time pure exchange economy populated by two agents i = 1, 2. Both

agents receive at all times 0 ≤ t ≤ T an equal share of the aggregate endowment stream10,

i.e. each agent receives at all times the endowment stream Yt

2
.

We say a consumption process is budget-feasible if it can be financed by selling the

agent’s endowment stream and purchasing the consumption process. Because the market

is (dynamically) complete, agent i = 1, 2 can implement any strictly positive consumption

stream ci = (cit)t that is budget-feasible; she chooses the one that maximizes her time-

separable utility

E

[∫ T

0

e−γtui(cit)dt

]
. (13)

Here, γ > 0 denotes the time-preference parameter. We adopt the concept of a rational

expectations equilibrium:

Definition 5 An equilibrium consists of consumption processes (cit)0≤t≤T for both agents

i = 1, 2 which maximize their utility s.t. the budget feasibility condition, and clear the

market at all times in all states, i.e. for all 0 ≤ t ≤ T : c1t + c2t = Yt, P -a.s.

To focus in this paper on the impact of heterogeneity in risk-preferences, we assume both

agents have identical time-preference parameters. Throughout the remainder of this paper

we assume that both agents have preferences with constant relative risk-aversion ρi > 0

(CRRA preferences, a.k.a. power utility), i.e.

ui(c) =
c1−ρi

1− ρi
for ρi ̸= 1 and ui(c) = ln c for ρi = 1.

10This assumption simplifies the exposition but does not affect our results qualitatively.
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We will compare an economy where agents are homogeneous in their risk-preferences (ρ1 =

ρ2) with an economy where their risk-preferences are heterogeneous (ρ1 ̸= ρ2).

4.2 The Representative Agent’s Relative Risk Aversion Function

It is well known, see, e.g. Duffie (2001) that a positive constant λ exists with the property

that for all 0 ≤ t ≤ T , P -a.s.,

λ =
u′2(c2t)

u′1(c1t)
. (14)

Theorem 6 For agents with identical time-preferences, firm price volatility is stochastic if

and only if agents have heterogeneous risk preferences

For future reference we denote by ω the (market) clearing function

ω(c) = λ−1/ρ2 · cρ1/ρ2 + c (15)

on the positive real line. Whatever agents’ risk-preferences, the function ω is a strictly

increasing, infinitely often differentiable function defined on the positive real line that maps

into the positive real line with ω(0) = 0 and limx→∞ ω(x) = ∞. Therefore, it has a unique,

infinitely often differentiable, inverse ψ on the positive real line which we call the sharing

rule of the aggregate endowment. Equation (14) implies c2t = λ−1/ρ2 · cρ1/ρ21t ; the market

clearing condition then reads for all 0 ≤ t ≤ T :

Yt = c1t + c2t = c1t + λ−1/ρ2 · cρ1/ρ21t = ω(c1t), i.e. c1t = ψ(Yt) P -a.s. (16)

In complete markets, the marginal utility of either representative agent defines the state-price

process as Mt = γ(t) ·m(Yt), where the γ,m are functions defined by

γ(t) = exp(−γ · t) and m(y) = ψ−ρ1(y) (17)

for 0 ≤ t ≤ T, y > 0. Note that here m defines the state-price density11 in the sense of

definition 1. Based on this we find the relative risk aversion function of the representative

agent as

ρ̄(y) = −u
′′
r(y)y

u′r(y)
= −m

′(y)y

m(y)
= ρ1

y

ψ
. (18)

11It is tedious to prove that suitable differentiability properties hold; we refrain from presenting this here.
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A closed-form sharing rule is available for quadratic market-clearing functions12, i.e. when

agents are heterogeneous with a ratio of relative risk aversion parameters ρ1/ρ2 = 2 or

equivalently ρ1 = 2ρ2. For illustration, let us adopt this parameterization for a moment;

then, for given ρ2, equation (15) has a unique inverse

ψ(y) =
1

2

(
λ

1
2ρ2

√
λ

1
ρ2 + 4y − λ

1
ρ2

)
, such that m(y) = 22ρ2

(
λ

1
2ρ2

√
λ

1
ρ2 + 4y − λ

1
ρ2

)
−2ρ2 ;

(19)

and so

ρ̄(y) =
4ρ2y

4y + λ
1
ρ2 − λ

1
2ρ2

√
4y + λ

1
ρ2

. (20)

Clearly the function is a weighted average of individual agent’s relative risk aversion, i.e.

the representative agent’s relative risk aversion function is not constant. This result suggests

that we take a closer look at the functional form the the representative agent’s risk aversion

function with homogeneous/heterogeneous agents.

4.3 Heterogeneity and Stochastic Volatility

We first look at the case of homogeneous agents (ρ1 = ρ2 = ρ). Then, equations (15, 17)

read

ω(c) = (1 + λ−1/ρ) · c, ψ(y) = 1

1 + λ−1/ρ
y, and m(y) = (1 + λ−1/ρ)ρy−ρ.

Under this assumption, the sharing rule ψ is linear, a well-known result for homogeneous

CRRA preferences, see, e.g. Magill and Quinzii (1996). We then calculate ρ̄ = const, again

a well known result, see, e.g., Rubinstein (1976). Together with theorem 4 this shows that

volatility is not stochastic with homogeneous agents.

Finally, we look at the heterogeneous agent case (ρ1 ̸= ρ2). When ρ1, ρ2 take any positive

value, there are no closed-form solutions for the sharing rule, in general. However, it is well

known that at the extremes y ↓ 0 and y → ∞ different agents dominate the state price

function, i.e. asymptotically it is y−ρ1 at one and like y−ρ2 at the other extreme. However,

ultimately, it cannot be described by a single power function of type y−ρ̄.

12Wang (1996) noted this and pointed out that closed-form solutions are available also for market clearing
functions that are third and for fourth order polynomials, i.e. ρ1/ρ2 = 3 or 4. He looked at the link between
the aggregate consumption stream and short-term interest rates, but was not interested in the volatility
dynamics.
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Figure 1: The representative agent’s risk aversion function; ρ2 < ρ1.

Figure 1 illustrates the representative agent’s relative risk aversion function ρ̄; without

loss of generality we order here the agents such that ρ2 < ρ1. For y ↓ 0, the second agent

dominates such that the ρ̄ → ρ2. However, for y → ∞, the first agent dominates such

that ρ̄ → ρ1. Therefore, the representative agent’s relative risk aversion function ρ̄ is not

constant in y for any (heterogeneous) CRRA agents (ρ1 ̸= ρ2). Based on these observations,

the representative agent’s relative risk aversion function cannot be constant and we see

stochastic volatility according to theorem 4. The appendix proves:

Theorem 7 For CRRA agents with identical time-preference parameters, firm price volatil-

ity is stochastic if and only if agents have heterogeneous risk-preferences.

This is our main result in this paper. It relates stochastic property of the volatility

process to heterogeneity in agent’s risk preferences: heterogeneity in risk preferences leads

to stochastic volatility, while homogeneity leads to constant volatility. Our results tie to-

gether insights from the single-period literature with those from the continuous-time pricing

literature. To recall how, a first observation is based on the discrete-time (single-period)

literature: that strand of literature studied that options written on lognormal distributed

aggregate endowment and documented for CRRA agents that homogeneity in risk preferences
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is a necessary and sufficient condition for the Black-Scholes formula to hold (Merton (1973),

Brennan (1979), Benninga and Mayshar (2000)); this stochastic framework cannot study dy-

namic aspects. A second observation is based on the continuous-time asset pricing literature:

we note that a (univariate) geometric Brownian endowment process is the continuous-time

analogue of a lognormal distributed endowment at terminal date; Weinbaum (2009) found

for such a continuous-time setup that volatility is a function of the endowment (so-called

state dependent volatility) when agents have heterogeneous CRRA risk preferences; while

this is an important insight, the literature documented extensively that volatility in asset

price processes is a stochastic process itself. Finally, a third observation is that the stochastic

volatility continuous-time option pricing literature matches well the empirical departure of

call prices from the Black-Scholes formula. Whereas the literature focuses largely on en-

dowment claims, a major modeling component in this paper is to revisit Rubinstein (1976)

and extend it to continuous-time, as he considers expressively claims on firm value. The

single-period distributions can be interpreted as the distributions of a continuous-time pro-

cess; with this in mind our characterization of (non-) stochastic volatility unifies the three

before-mentioned observations.

5 Conclusion

This paper linked the functional form of stochastic discount factor to stochastic volatility. In

particular, we showed that we see to constant volatility only when the representative agent

exhibits CRRA preferences, while non-CRRA preferences lead to stochastic volatility of the

firm price process. We derived the equilibrium in an economy populated by two agents with

identical time-preference parameters but potentially heterogeneous CRRA preferences and

showed that the firm price process exhibits stochastic volatility if and only if agents’ risk

preferences are heterogeneous. Our results unified several theoretical observations from the

single-period and continuous time option pricing literature as well as those from the empirical

literature on observed price processes and traded option prices. Different from the stochastic

dividends, stochastic information flow and heterogeneous beliefs literature, we provide an

alternative rationale for stochastic volatility based on aggregation of heterogeneous agents.
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Appendix: Proofs

Throughout this appendix we study state-price processes in the sense of definition 1 and use

the random variables ZY
tT , Z

F
tT of equation (2.2). For later reference we denote by ϵm the

elasticity of the state-price function m w.r.t. the aggregate endowment:

ϵm(y) =
m′(y)y

m(y)
.

Note that the elasticity ϵm relates to the relative risk aversion function ρ̄ of the representative

agent through

ρ̄(y) = −u
′′
r(y)y

u′r(y)
= −m

′(y)y

m(y)
= −ϵm(y). (A1)

Also for later references, we define a time functions φ, φ̃ and denote by ϵB the elasticity of

the function y 7→ E[m(yZY
tT )] w.r.t. the aggregate endowment:

φ(t) = eµY (T−t), φ̃(t) = eκσY σF (T−t); ϵB(t, y) =
E
[
m′(yZY

tT ) · (yZY
tT )
]

E[m(yZY
tT )]

.

Lemma A1 For a state-price function m, y > 0 and 0 < t < T we have

E
[
m(yZY

tT ) · ZF
tT

]
= eµF (T−t)E[m(φ̃yZY

tT )].

Proof of Lemma A1. The random variable e−µF (T−t)ZF
tT fulfills the properties of a

Radon-Nikodyn density and can be used to define a new probability measure QF . Under

this new probability measure, the random variable lnZY
tT has mean (µY − σ2

Y /2) (T − t) +

κσY σF (T − t). Thus, we can treat ZY
tT as φ̃ZY

tT under the original measure which implies the

statement.

Proof of Theorem 2. We define the process W̃ F and the function VS by setting

dW̃ F
t =

1√
VS · St

(
∂S

∂f
σFFtdW

F
t +

∂S

∂y
σY YtdW

Y
t

)
and (A2)

VS(t, f, y) =
1

S2

{(
∂S

∂f
σFf

)2

+ 2κ
∂S

∂f
σFf

∂S

∂y
σY y +

(
∂S

∂y
σY y

)2
}

. (A3)

It is straightforward to check that the process W̃ F has independent increments as well as

that these are conditionally normal distributed with a mean of zero and a variance equal to

the time increment; therefore, W̃ F describes a standard Wiener process. Based on equation
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(4) we calculate ∂S
∂f

= S
f
; using the definition of the elasticity ϵS, see equation (5) proves the

statement with

VS(t, y) = σ2
F +

(
σY ϵS(t, y)

)2
+ 2κσFσY ϵS(t, y).

The stated form of VS follows through a straightforward transformation.

Proposition A2 At any point in time, we can write

ϵS(t, y) = ϵm (φy)− ϵm(y) + κσFσY (T − t) ·
(
y
∂ϵm
∂y

)(
eµY (T−t)y

)
,

up to terms of order higher than quadratic in σY .

Proof of Proposition A2. To simplify presentation in this proof we do not write

out the time-dependency of φ̃ explicitly, unless necessary to prevent confusion. Lemma A1

proves that the firm price function of equation (4) can be written as

S(t, f, y) = eµF (T−t)f
γ(T )

γ(t)

E[m(yφ̃ZY
tT )]

m(y)
.

Based on this representation we calculate

∂S

∂y
= eµF (T−t)f

γ(T )

γ(t)

E
[
m′(yφ̃ZY

tT )φ̃Z
Y
tT

]
m(y)− E

[
m(yφ̃ZY

tT )
]
m′(y)

m2(y)
.

Using the above characterization of S we find

ϵS(t, y) = ϵB(t, φ̃y)− ϵm(y) (A4)

For all σY > 0 and y > 0 we define a random variable

ϕ(σY , y) = y exp

((
µY + κσFσY − σ2

Y

2

)
(T − t) + σY

√
T − tU

)
,

where U is a given standard normal random variable. To simplify the presentation in this

proof we do not write out the dependencies of ϕ on σ, y explicitly, unless necessary to prevent

confusion. We then define functions ξ1, ξ2 and ζ1, ζ2 by

ξ1(σY , y) = m′ (ϕ)ϕ, ξ2(σY , y) = m (ϕ) ,

and ζ1(σY , y) = E[ξ1(σY , y)], ζ2(σY , y) = E[ξ2(σY , y)].
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Our idea is to study the asymptotic behavior of ϵB(t, φ̃y) in the parameter σY near 0.

Note that yφ̃ZY
tT = ϕ, such that ϵB(t, φ̃y) = ζ1(σY , y)/ζ2(σY , y). Under suitable assumptions

on the state-price function we can interchange first and second order σY differentiation in

ζ1, ζ2 and expectation. Furthermore, we can apply Taylor’s Theorem; it tells us that

ζ1(σY , y) = ζ1(0, y) +
∂ζ1
∂σY

(0, y)σY , ζ2(σY , y) = ζ2(0, y) +
∂ζ2
∂σY

(0, y)σY ,

both up to terms of order higher than quadratic in σY . This expansion implies

ζ1(σY , y)

ζ2(σY , y)
=

ζ1(0, y)

ζ2(0, y)
+

(
∂ζ1
∂σY

(0, y)

ζ2(0, y)
−
ζ1(0, y)

∂ζ2
∂σY

(0, y)

ζ22 (0, y)

)
σY , (A5)

up to terms of order higher than quadratic in σY . For further analysis we then calculate

∂ζ1
∂σY

= E

[
m′′ (ϕ)ϕ

∂ϕ

∂σY
+m′(ϕ)

∂ϕ

∂σY

]
, and

∂ζ2
∂σY

= E

[
m′(ϕ)

∂ϕ

∂σY

]
.

In addition, we calculate

∂ϕ

∂σY
= ϕ ·

(
κσF (T − t)− σY (T − t) +

√
T − tU

)
, such that

ϕ(σY = 0) = φy,
∂ϕ

∂σY
(σY = 0) = φy ·

(
κσF (T − t) +

√
T − tU

)
.

At σY = 0 we then find that

ζ1(0, y) = m′ (φy)φy,
∂ζ1
∂σY

(0, y) = (m′′ (φy) yφ+m′ (φy)) yφκσF (T − t),

ζ2(0, y) = m (φy) ,
∂ζ2
∂σY

(0, y) = m′ (φy)φyκσF (T − t).

Using equation (A5) this shows

ϵB(t, φ̃y) =
m′ (φy)φ(t)y

m (φy)
+

(
m′′ (φy)φy +m′ (φy)

m (φy)
− (m′ (φy))2 φy

m2 (φy)

)
yφκσFσY (T − t),

In addition, we calculate that

m′′ (φy)φy +m′ (φy)

m (φy)
− (m′ (φy))2 φy

m2 (φy)
=

∂

∂y

(
m′ (φy) y

m (φy)

)
=

1

φ

∂

∂y

(
m′ (φy) yφ

m (φy)

)
=

1

φ

∂ϵm (φy)

∂y
=
∂ϵm
∂y

(φy) . (A6)

Overall, this shows

ϵB(t, φ̃y) = ϵm (φy) +

(
y
∂ϵm
∂y

)
(φy)κσFσY (T − t),

Using equation (A4) then ends the proof.
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Proposition A3 At any point in time, we can write

ϵS(t, y) = (µY − κσFσY )(T − t) ·
(
y
∂ρ̄

∂y

)(
eµY (T−t)y

)
,

up to terms of order higher than quadratic in σY .

Proof of Proposition A3. Proposition A2 together with the equality (A1).

Proof of Theorem 4. Based on our discussion before Theorem 4 it remains to prove

the converse. Therefore, in this proof let us assume that firm volatility is not stochastic; our

goal is to show that this implies that m is a power function. As discussed earlier, this will

then imply that the representative agent has CRRA preferences.

Our idea is to study the asymptotic behavior of ϵS in the parameter t near T ; then drift

and volatility tend to zero. A proof using a time expansion that is analogous to the σY

expansion of Proposition A2 shows that

ϵS(t, y) = ϵm (φy)− ϵm(y) + κσFσY (T − t) ·
(
y
∂ϵm
∂y

)(
eµY (T−t)y

)
,

up to terms of order higher than quadratic in T − t. A Taylor expansion of ϵm around φy

shows that ϵm(φy)− ϵm(y) =
∂ϵm
∂y

(φy) (1− φ)y, up to terms of order higher than quadratic

in 1−φ. Also, a Taylor expansion shows that φ = 1+µY (T − t), up to terms of order higher

than quadratic in T − t. Overall, this proves

ϵS(t, y) =

(
y
∂ρ̄

∂y

)
(φy) (µY − κσFσY ) (T − t),

up to terms of order higher than quadratic in T − t. This implies that ∂ρ̄
∂y
y must vanish for

all y, i.e. ρ̄ must be a constant.

Proof of Theorem 7. We only prove that the converse is true, i.e. we prove that if

volatility is not stochastic, then both agents have identical risk-aversion parameters. The

result follows directly from this.

For this, we assume that volatility is not stochastic. Theorem 4 implies that there

are constants α, β such that the state-price function is m(y) = αyβ. Also, we know that

m(y) = (ψ(y))−ρ1 . Therefore,

α−1/ρ1y−β/ρ1 = ψ(y), and λ−1/ρ2α−1/ρ2y−β/ρ2 = λ−1/ρ2(ψ(y))ρ1/ρ2 ,
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which implies

y = ω(ψ(y)) = ψ(y) + λ−1/ρ2(ψ(y))ρ1/ρ2 = α−1/ρ1y−β/ρ1 + λ−1/ρ2α−1/ρ2y−β/ρ2 .

However this requires ρ1 = ρ2, i.e. agents are homogeneous.
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