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Abstract

In this paper, new multivariate GARCH models are developed. These mod-
els respect the intrinsic geometric properties of the covariance matrix, and
therefore are physically more meaningful. The models can be specified using
either asset returns or realized covariances. Tested on three data samples,
the empirical results suggest that our models outperform existing models
such as BEKK and DCC, and realized covariance based models outperform
return based models. In assessing the models, new parameter estimation
method and performance evaluation methods are proposed. Limitations of
existing evaluation methods are also addressed. Principal geodesic analysis
(a version of principal component analysis) shows that time series variation
of covariance matrices can be identified by a small number of axes, which
suggests potential for a parsimonious specification of covariance dynamics
for a large dimensional system.
JEL Classification: C32; C52; C58
Keywords: Geometric GARCH; Multivariate GARCH; Covariance; Realized
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1. Introduction

Since the seminal work of Bollerslev et al. (1988), there has been signif-
icant interest in the development of multivariate GARCH models (see, e.g.,
Bauwens et al. (2006), Silvennoinen and Teräsvirta (2009)). In generaliz-
ing the classical scalar GARCH model to the multidimensional case, two of
the most critical issues are how to construct multidimensional models using
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a small number of physically meaningful parameters, and how to preserve
positive definiteness in any iterative formula for the covariance matrix.

For multivariate models such as the BEKK model of Engle and Kroner
(1995) and its extensions, the number of model parameters scales as at least
O(n2)–here n is the dimension of the system–because of the presence of an
n×n constant matrix in the propagation equations, and the computational
burden rapidly becomes untenable even for a moderately large n. Covari-
ance targeting, which uses sample analogues to derive the constant matrix
instead of estimating it simultaneously with the other parameters, has been
proven to be effective in mitigating the effects of dimensional scaling of the
model parameters (see, e.g., Cappiello et al. (2006), Noureldin et al. (2012),
Noureldin et al. (2014)). However, the estimation error of the sample co-
variance can be large especially when the length of the available time series
is relatively short compared to the dimension of the system, and the power
of this method can deteriorate as n increases.

Ensuring positive definiteness of the covariance matrix in the propaga-
tion formulas is more subtle. The BEKK model assumes a positive definite
quadratic form for the model parameters. The DCC model of Engle (2002)
separates variances and correlations, and models the correlation matrix in-
dependently via BEKK. GO-GARCH (van der Weide, 2002), as well as other
factor models like Vrontos et al. (2003), Lanne and Saikkonen (2007), pre-
serve positive definiteness by transforming the original data to independent
factors, and applying GARCH models to these factors. Kawakatsu (2006)
extends the exponential GARCH of Nelson (1991) to the multivariate case
by exploiting the fact that the matrix exponential of a symmetric matrix is
always positive definite.

More recently, covariance time series models that utilize realized co-
variance have received considerable attention in the literature. Realized
covariance not only appears to carry more information about the future
covariance, but also allows one to address aforementioned issues more con-
veniently. For example, Chiriac and Voev (2011) decompose the realized co-
variance matrices to construct a multivariate vector fractionally integrated
ARMA (VARFIMA) process, and obtain positive definite covariance fore-
casts without imposing any restrictions. The HEAVY model proposed by
Noureldin et al. (2012) resembles BEKK but utilizes realized covariances in-
stead of daily returns, and has closed-form formulas for multi-step forecasts.
RARCH models proposed by Noureldin et al. (2014) extend the BEKK and
DCC models by rotating the returns prior to applying these models. Com-
bined with covariance targeting, RARCH models can be applied to a large
dimensional system. One of the limitations of realized covariance based

2



models is that it is applicable only to assets that are traded simultaneously.
Also, market microstructure issues can be involved when calculating realized
covariances.

While the existing methods manage to preserve positive definiteness of
the covariance matrix, they rely on ad hoc methods that fail to preserve the
intrinsic geometric properties of symmetric positive definite matrices. We
explain in further detail in the next section, but the correct way of measur-
ing the distance between a pair of covariance matrices is as the length of
the shortest path connecting the pair, and there is in fact a natural notion
of length on the space of covariance matrices. These issues are highlighted
in Han et al. (2016), whereby connections with known results on the intrin-
sic geometry of covariance matrices are identified; this allows one to, among
other things, formulate coordinate-invariant notions of distances between co-
variance matrices, and to extend principal component analysis to covariance
matrices in a geometrically well-defined, coordinate-invariant manner (via
principal geodesic analysis). Distance between covariance matrices, direc-
tion from one covariance matrix to another, and other geometric properties
defined on the space of covariance matrices can be utilized to develop an
intuitive and physically meaningful covariance dynamics model.

The advantages of taking an intrinsic geometric approach in financial
applications have been demonstrated in Webber (2000), Björk (2001), Fil-
ipović and Teichmann (2004), Park et al. (2011), but covariance dynamics
has not been addressed in this fashion. The aim of this paper is to de-
velop new multivariate GARCH models (geometric GARCH) that respect
the geometric structure of covariance matrices, provide sufficient flexibility
without using a large number of model parameters, and at the same time
computationally efficient. Computational efficiency is achieved by making
appropriate linear approximations in the propagation equations. Two classes
of models, one that utilizes asset returns and the other that utilizes real-
ized covariances are developed. These models can be estimated via the
usual quasi-maximum likelihood estimation, but a new model parameter es-
timation method based on geometrically correct notions of distance between
covariance matrices is also developed. Since our focus is on portfolio and
risk management, covariance models are assessed based primarily on their
out-of-sample performance via various performance metrics. For this, new
performance evaluation metrics that are particularly suitable for risk man-
agement are developed. Time series variations of covariance matrices are
investigated via principal geodesic analysis and potential for a parsimonious
specification of the covariance models is discussed. Empirical studies involv-
ing three data samples show that our models outperform existing models
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such as BEKK, DCC, and matrix exponential GARCH.

2. Geometry of Covariance Space

For completeness of the paper, geometric properties of the covariance
space that are particularly relevant to the development of the covariance
dynamics in this paper are briefly described. More complete description
can be found in Fletcher et al. (2003), Fletcher and Joshi (2004), Moakher
(2005), Lenglet et al. (2006).

The covariance space P (n) is defined as1

P (n) =
{
P ∈ Rn×n | P = P>, P > 0

}
. (1)

P (n) is a differentiable manifold whose tangent space at a point P ∈ P (n)
can be identified with n × n symmetric matrices, S(n). For this space, a
Riemannian structure can be constructed via the Riemannian metric given
by 〈X,Y 〉P = tr(P−1XP−1Y ), X,Y ∈ S(n). In terms of this metric, the
minimal geodesic (shortest path) γ(t) : [0, 1]→ [A,B] connecting two points
A,B ∈ P (n) is given by

γ(t) = G
(
G−1BG−>

)t
G>, (2)

where GG> = A, G ∈ GL+(n). GL+(n) denotes the identity component
of the general linear group GL(n), i.e., a subgroup of GL(n) with positive
determinants. The tangent vector of the geodesic at A is defined by the
Riemannian log map

LogA(B) = G log
(
G−1BG−>

)
G>. (3)

The inverse of the Riemannian log map, the Riemannian exponential
map is also defined. Given an element X ∈ S(n), the minimal geodesic
emanating from some A ∈ P (n) in the direction of the tangent vector X can
be computed as follows:

ExpA(X) = G exp
(
G−1XG−>

)
G>. (4)

Defining the distance between A and B in the usual way by the length of

1Strictly speaking, a covariance matrix can be positive semidefinite, but singular cases
are ignored here as they are not of interest in financial applications.
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the above minimal geodesic, we have

d(A,B) = ||LogAB|| =

(
n∑
i=1

(log λi)
2

)1/2

(5)

where || · || is the Frobenius norm, and λ1, . . . , λn are the eigenvalues of the
matrix AB−1. Since AB−1 is symmetric positive-definite, the eigenvalues of
AB−1 are all positive, and log λi is well defined for each i. Note also that
d(A, γ(t)) = t d(A,B). Therefore, a point on the geodesic between A and B
that divides it in the ratio α : 1− α, I(A,B, α), is given by

I(A,B, α) = ExpA(αLogAB). (6)

With the above metric structure on P (n), an intrinsic mean can be
defined as follows (Fletcher and Joshi, 2004):

P̄ = argmin
P̄∈P (n)

N∑
i=1

d(P̄ , Pi)
2. (7)

For the case of two points, the intrinsic mean is simply the midpoint of the
minimal geodesic. For an arbitrary N , the above intrinsic mean is unique
on P (n). The intrinsic mean has several advantages over the widely used
arithmetic mean 1

N

∑N
i=1 Pi: e.g., the arithmetic mean of matrices with an

equal determinant can have a larger determinant.

2.1. Principal Geodesic Analysis

Principal geodesic analysis (PGA), like the principal component
analysis (PCA) which finds a linear subspace in which the variability of the
data is best described, seeks a submanifold that best represents the vari-
ability of the data in a Riemannian manifold. Fletcher and his colleagues
investigate the PGA on a Lie group (Fletcher et al., 2003) and also on the
space P (n) (Fletcher and Joshi, 2004). They show that PGA can be essen-
tially carried out by applying PCA to the tangent space of the covariance
space at the intrinsic mean. Below is a summary of the algorithm for PGA
on P (n). For more details, the reader is referred to the references cited
above.

• Given P1, · · · , PN ∈ P (n),

• Calculate the intrinsic mean of {Pi} and denote it by P̄ .
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• Compute the tangent vectors at P̄ of the geodesics connecting P̄ and
Pi:

Xi = LogP̄ (Pi). (8)

• Apply PCA to {Xi}, i.e., find eigenvectors and eigenvalues, {vk, λk},
of

S =
1

N

N∑
i=1

xix
>
i , (9)

where xi = vech(Xi), half vectorization of Xi. Vk = vech−1(vk) ∈
S(n), k = 1, · · · , n(n + 1)/2, are the principal directions and λk are
the corresponding variances.

Each observation Pi can be reproduced by the formula

Pi = ExpP̄

n(n+1)/2∑
k=1

αkiVk

 , (10)

where αki = v>k xi. Provided that a time series of a covariance matrix is
observable, PGA can identify the principal axes of variation of the covariance
matrix. This can provide a valuable information about the evolution of the
covariance matrix. Later in this paper, the evolution of a covariance matrix
is analyzed via PGA using a realized covariance measure as a proxy for the
true covariance matrix.

3. Dynamics of Covariance Matrix

Suppose that an n-variable system, rt, is governed by the following equa-
tion:

rt = µ+ et, et ∼ N(0, Ht), (11)

where Ht ∈ P (n) is the covariance matrix of et. Following Laurent et al.
(2012), Becker and Clements (2008), and Hansen and Lunde (2005) among
others, rt is assumed to have a constant mean. It is also found that adding
autoregressive terms in the mean equation has little effect on the results of
the empirical studies in this paper (not reported). In any event, a general-
ization to a time-varying mean model should be straightforward.

The covariance matrix of the residuals is assumed to have dynamics of
the form

dHt = Ftdt, (12)
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where Ft is a time-varying n × n symmetric matrix which depends on the
information set at time t. As dHt is the differential of Ht, it is defined in
the tangent space S(n), and it suffices for Ft to be symmetric.

P (n) is a Riemannian symmetric space that is geodesically complete,
and as such the minimal geodesics provide a natural way of discretizing
general differential equations on P (n). Using the Riemannian exponential
map defined in (4), Ht is approximated by the formula

Ht = ExpHt−1
(Ft−1), (13)

where Ft−1 is the tangent vector at Ht−1 of the geodesic between Ht−1 and
Ht. The dynamics of the covariance matrix is completely determined by the
tangent vector Ft−1 which is assumed to be a function of the information
set at time t − 1. We call this type of specification Geometric GARCH
(GGARCH) models. In the following, two specifications of Ft−1, one that
utilizes asset returns and the other that utilizes realized covariance are pro-
posed.

3.1. Geometric GARCH in the Absence of Realized Covariance

Figure 1: Geometric GARCH in the absence of realized covariance.

The first model is derived from the assumption that the covariance ma-
trix has a mean reverting property such that it has a tendency to move
toward a constant covariance matrix HI : At time t − 1, the covariance es-
timate, Ht−1, is first updated by the shock et−1 to a new point H ′t−1, and
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then moves toward HI along the geodesic between H ′t−1 and HI . The new
covariance estimate Ht is determined on this geodesic. This is illustrated in
Figure 1.

More precisely, H ′t−1 is assumed to be on the geodesic between Ht−1 and
Et−1, a covariance matrix derived from et−1:

H ′t−1 = I(Et−1, Ht−1, a
2), a2 < 1. (14)

Et−1 is assumed to have the form

Et−1 = C ◦
(
(1− b2)et−1e

>
t−1 + b2ηt−1η

>
t−1

)
, (15)

where ηt−1 = 1/2(|et−1| − et−1) is a variable to reflect the asymmetric effect
of the shocks, b2 < 1, C ∈ Rn×n is a covariance adjustment term of the form

C =


1 c · · · c

c
. . .

...
...

. . . c
c · · · c 1

 , 0 < c < 1, (16)

and ◦ is the Hadamard product.
Et−1 defined as in (15) is generally in P (n). However, it is possible

that Et−1 becomes singular if any of the elements of et−1 is zero, in which
case, H ′t−1 in (14) is not well defined. To mitigate this problem, H ′t−1 is
approximated as follows:

H ′t−1 = (1− a2)Ht−1 + a2Et−1. (17)

This approximation turns out to have little effect on the results since the
estimate of a2 tends to be small (H ′t−1 close to Ht). Also, it reduces the
computational burden of the matrix exponential and logarithm involved in
Equation (14). A more general form of (17) is also considered:

H ′t−1 = (ii> − ~a~a>) ◦Ht−1 + ~a~a> ◦ Et−1, (18)

where ~a ∈ Rn with i-th element a2
i < 1, i = 1, · · · , n. This generalized form

is to see whether the added degrees of freedom can improve the model.
Once H ′t−1 is determined, new estimate of the covariance matrix at time

t is determined as a point on the geodesic between H ′t−1 and HI , and is
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obtained by the formula:

Ht = I(HI , H
′
t−1, α), 0 < α < 1. (19)

Denoting the tangent vector of the geodesic between HI and H ′t−1 by Ft−1,
i.e.,

Ft−1 = LogHI (H
′
t−1), (20)

Ht is given by
Ht = ExpHI (αFt−1). (21)

3.1.1. Positive Definiteness and Covariance Stationarity

If Ht−1 is positive definite, it is trivial to show that H ′t−1 is also positive
definite. Then, by definition, Ht is also positive definite.

To prove covariance stationarity, first note that the sum of the coefficients
of Ht−1 and et−1e

>
t−1 and a half of the coefficient of ηt−1η

>
t−1 in (18) has the

form

(ii> − ~a~a>) + ~a~a>(1− b2) +
1

2
~a~a>b2 = ii> − 1

2
~a~a>b2,

and its i-th diagonal element, 1 − 1/2a2
i b

2 < 0 for i = 1, · · · , n. Therefore,
H ′t−1 is covariance stationary. Since Ht is a point in P (n) that divides the
geodesic between HI and H ′t−1 internally, covariance stationarity condition
is satisfied.

3.2. Geometric GARCH in the Presence of Realized Covariance

If the assets of interest are traded simultaneously, e.g., stocks traded
in the same exchange, realized covariance can be computed and utilized
in the covariance dynamics model. Under similar assumptions made for
the GGARCH model without realized covariance, the covariance dynamics
that incorporates realized covariance is constructed as follows. First, the
covariance matrix is assumed to move to a new positionH ′t−1 by the formula2

H ′t−1 = (1− a2)Ht−1 + a2Ct−1, a2 < 1, (22)

2H ′t−1 can be defined as a point on the geodesic between Ht−1 and Ct−1. This gave
similar results to those from (22), while computationally more demanding. Also, a more
general form as in (18) is not considered here as Ct−1 is a covariance matrix of et−1 and
H ′t−1 as a convex combination of Ht−1 and Ct−1 is intuitively appealing.
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Figure 2: Geometric GARCH in the presence of realized covariance.

where Ct−1 is a realized covariance matrix at time t − 1. Then, the new
covariance estimate is determined by

Ht = I(HI , H
′
t−1, α), 0 < α < 1. (23)

Denoting the tangent vector of the geodesic between HI and H ′t−1 by Ft−1,
i.e.,

Ft−1 = LogHI (H
′
t−1), (24)

Ht is given by
Ht = ExpHI (αFt−1). (25)

This specification is conceptually similar to the scalar version of the HEAVY
model by Noureldin et al. (2012). Positive definiteness and covariance sta-
tionarity can be shown using arguments similar to those in Section 3.1.1.

3.3. Estimation

Like other multivariate GARCH models, the GGARCH models proposed
in Section 3.1 and 3.2 can be estimated using the quasi-maximum likelihood
estimation (QMLE):

max
θ

Ti∑
t=1

−1

2

(
n log(2π) + log |Ht|+ e>t H

−1
t et

)
, (26)
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where θ is the model parameters and Ti is the sample size.
If a realized covariance measure can be obtained, another way to esti-

mate the model parameters is to minimize the distance between the forecast
covariance matrix Ht and the realized covariance matrix Ct. One obvious
choice of the distance metric between matrices is the Frobenius norm; see
Laurent et al. (2012), for example. Another metric that is consistent with
our approach is the length of the geodesic between Ht and Ct. The model
parameters can be estimated minimizing the error defined by one of these
metrics:

min
θ

Ti∑
t=1

||Ht − Ct|| (Frobenius norm), (27)

min
θ

Ti∑
t=1

||LogHtCt|| (Length of geodesic), (28)

where ||A|| =
√
tr(AA>) is the Frobenius norm. The distance-based esti-

mation criteria assume that the realized covariance is a good proxy for the
true covariance.

4. Evaluation

The most important function of the volatility models, either univariate
or multivariate, is to forecast future volatilities, and as such the covariance
models are evaluated using several out-of-sample performance metrics espe-
cially in the context of risk and portfolio management.

4.1. Likelihood

The first performance metric considered is out-of-sample likelihood, which
is obtained from one day forecast of the covariance matrix during the out-of-
sample period. Given one day forecasts Ht, t = 1, · · · , T , the out-of-sample
likelihood is defined by the formula

logL =
Ti
T

T∑
t=1

−1

2

(
n log(2π) + log |Ht|+ e>t H

−1
t et

)
, (29)

where Ti and T are respectively in-sample and out-of-sample sizes. The scal-
ing factor Ti/T is multiplied in order to make the out-of-sample likelihood
comparable to the in-sample likelihood.
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4.2. Portfolio Variance

The next performance metric is based on the variance of portfolio re-
turn. On each day during the out-of-sample period, the return of a portfolio
is computed and normalized by its forecast variance. Then, the standard
deviation of the normalized return, Sp, is calculated over the out-of-sample
period:

Sp =

√√√√ 1

T − 1

T∑
t=1

(rpt − r̄p)2, (30)

where

rpt =
w>rt√
w>Htw

, r̄p =
1

T

T∑
t=1

rpt, (31)

and w is the vector of the portfolio weights. If the forecast Ht is accurate,
rpt will follow the standard normal distribution and Sp will converge to 1 as
the sample size increases. Accordingly, the performance metric is defined as
the difference between Sp and 1:

dSp = |Sp − 1|. (32)

For the empirical studies in this paper, an equal-weight portfolio and single-
asset portfolios, i.e., portfolios consisting of only one asset, are considered
for evaluation. For practical implementation, a financial institution may use
their own portfolios.

4.3. Portfolio Conditional Expectation

An accurate estimation of the covariance matrix does not necessarily
translate into an accurate estimation of tail distribution unless the actual
distribution of the data is equal to the assumed distribution, which is normal
in our case. Nonetheless, evaluating the models using a risk measure is still
important as most risk measures are based on the covariance matrix. More
generally, it would be informative to compare the distribution implied by the
model with the actual distribution. In order to measure the overall fitting of
the distribution, performance metrics based on conditional expectation are
defined as follows. For the normalized return defined in (31), conditional
means at different probability levels are calculated on both sides of the
distribution. More specifically, for a given probability level α > 0.5, the
conditional mean on the positive side, CEpα, and the conditional mean on
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the negative side, CEnα, are computed using the formulae:

CEpα =

∑T
t=1 rpt · δrpt>zα∑T
t=1 δrpt>zα

, (33)

CEnα =

∑T
t=1−rpt · δ−rpt>zα∑T

t=1 δ−rpt>zα
, (34)

where δi is the Kronecker delta, and zα is the z-score at the probability
level α. rpt in (34) is premultiplied by -1 to make CEnα positive. CEnα with
a high value of α, e.g., 0.95 or 0.99, is often called conditional Value-at-
Risk or expected shortfall, and is a widely used risk measure. Conditional
expectation is preferred as an evaluation metric to a point estimate such as
Value-at-Risk since the former contains information about a range of the
distribution.

If the forecast of the covariance matrix is accurate and the return is
normally distributed, CEpα and CEnα will converge to the theoretical value

CEα =
1

1− α

∫ ∞
zα

zΦ(z)dz, (35)

where Φ(z) is the standard normal probability density function. A natu-
ral choice of performance metric in this case is the difference between the
estimated value and the theoretical value:

dCEpα =
|CEpα − CEα|

CEα
, (36)

dCEnα =
|CEnα − CEα|

CEα
. (37)

In the empirical studies, dCEpα and dCEnα are measured for equal-weight
portfolios and single-asset portfolios for α ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99}.

4.4. Minimum Variance Portfolio

The next performance metrics are related to the minimum variance port-
folio. If the covariance dynamics is correctly specified, a minimum variance
portfolio obtained from the forecast covariance matrix is expected to have a
minimal variance. In this sense, the variance of the minimum variance port-
folio can serve as a performance indicator of the covariance models. Mini-
mum variance portfolios are constructed and their variances are calculated
as follows. First, it is assumed that the portfolio is rebalanced whenever
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the covariance models are recalibrated (every 22 days as illustrated in Sec-
tion 5.5), and held until the next rebalancing date. No constraints except
budget constraint are imposed during the portfolio construction. Then, the
minimum variance portfolio is given by the closed form

wmin
t =

H−1
t i

i>H−1
t i

, (38)

where the superscript “min” denotes a minimum variance portfolio, and i
denotes a vector of ones of an appropriate size. The portfolio return is
computed every day during the out-of-sample period and its sample standard
deviation is calculated:

Smin
p =

√√√√ 1

T − 1

T∑
t=1

(rmin
pt − r̄min

p )2, (39)

where rmin
pt = r>t w

min
t . A more accurate covariance model will lead to a

smaller standard deviation. Only standard deviation is compared for evalu-
ation because mean return or any other performance measures that involve
mean return such as Sharpe ratio do not necessarily imply the accuracy of
the covariance models.

Another performance metric associated with portfolio rebalancing is the
turnover of the portfolio. A covariance model that yields erratic estimates
over time will result in a high turnover when the portfolio is rebalanced. An
unstable covariance matrix is not only counter-intuitive but also harmful for
portfolio management as it will incur a high transaction cost. In this regard,
turnover is an appropriate metric to measure the stability of the covariance
estimates. When the portfolio is rebalanced at time t, turnover is defined as

dwt = |wt − wt− |>i, (40)

where wt− and wt are portfolio weights at time t, immediately before and
after rebalancing. The performance metric is defined as the average turnover
during the out-of-sample period:

dw =
1

K

K∑
k=1

dwtk , (41)

where K is the number of rebalancing during the out-of-sample period, and
tk is the k-th rebalancing time.
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4.5. Distance Metrics

The final performance metric is applicable when the realized covariance
can be measured. If the realized covariances are available, the distance
between the forecast covariance and the realized covariance can be used to
evaluate the forecast accuracy of the model. The Frobenius norm and the
length of the geodesic between the two covariance matrices are chosen as
distance measures and the performance metrics are defined as the average
distances over the out-of-sample period:

DF =
1

T

T∑
t=1

||Ht − Ct||, (42)

DG =
1

T

T∑
t=1

||LogHtCt||. (43)

DF is the Frobenius norm-based performance metric and DR is the geodesic
length-based performance metric.

5. The Data and the Models

For the empirical studies, three data samples are selected: Global stock
market indexes, currencies, and individual stocks. Testing the models on
three data samples of distinct characteristics will enhance the reliability of
the conclusions derived from the empirical studies. Stock market indexes
are important for international diversification. Three major stock market
indexes are chosen for the first sample. Currencies are distinct from the
other two data samples in the sense that they feature negative correlation.
In the third sample, six stocks from the US stock market are chosen to test
the models in a relatively large dimensional environment. The assets in the
last two samples are traded simultaneously, and realized covariances can
be obtained from high frequency trading data. Details of each sample are
described below.

5.1. Stock Market Indexes

Following Kawakatsu (2006), the first data sample consists of three stock
market indexes; S&P500, FTSE100, and NIKKEI225. Daily index values are
collected from DataStream and daily index returns are generated during the
period from 1997-01-02 to 2014-12-31. The return time series are displayed
in Figure 3 and their descriptive statistics are reported in Table 1. S&P500
and FTSE100 have a similar level of variance and are highly correlated with
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Figure 3: Daily returns of the stock indexes in the first sample from 1997-01-02 to 2014-
12-31.

Table 1: Descriptive statistics of the stock index daily returns. The indexes are S&P500
(S&P), FTSE100 (FTSE), and NIKKEI225 (NIKKEI). The sample period is from 1997-
01-02 to 2014-12-31, and the mean (Mean) and the standard deviation (Stdev) values are
annualized assuming 250 business days per year.

Mean Stdev Correlation
S&P FTSE NIKKEI

S&P 0.074 0.197 1.000 0.512 0.112
FTSE 0.043 0.190 0.512 1.000 0.284

NIKKEI 0.023 0.240 0.112 0.284 1.000
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each other, whereas NIKKEI225 has a relatively higher variance and a lower
return-to-risk ratio. The correlations between NIKKEI225 and the other two
markets are also much lower compared to the correlation between S&P500
and FTSE100. In Figure 3, volatility clustering can be observed in all three
markets.

5.2. Currencies

Figure 4: Daily returns of the currencies in the second sample from 2002-01-02 to 2014-
12-31.

The second data sample consists of three currencies; Euro (EUR), British
Pound (GBP), and Japanese Yen (JPY), which are expressed as US dollar
price per unit currency. Laurent et al. (2012) also analyze the covariance
of these currencies. The sample period is chosen to be from 2002-01-02 to
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Table 2: Descriptive statistics of the currency daily returns. The currencies are Euro
(EUR), British Pound (GBP), and Japanese Yen (JPY). The sample period is from 2002-
01-02 to 2014-12-31, and the mean (Mean) and the standard deviation (Stdev) values are
annualized assuming 250 business days per year.

Mean Stdev Correlation
EUR GBP JPY

EUR 0.024 0.099 1.000 0.673 -0.237
GBP 0.016 0.091 0.673 1.000 -0.128
JPY -0.008 0.102 -0.237 -0.128 1.000

2014-12-31.3 These currencies are traded simultaneously and as such both
daily returns and realized covariances are calculated. Liu et al. (2014), in
their extensive empirical study, find little evidence that a simple 5-minute
realized variance is outperformed by other measures. Based on their findings,
the realized covariance is computed from 5-minute data as follows. First,
spot exchange rates are collected every 5 minutes from 00:00 to 24:00 GMT
during the sample period from Thomson Reuters Tick History. Let h denote
the time during the trading hours of a day such that h = 1, 2, · · · represent
5, 10, · · · minutes from the opening of the market. 5-minute log-returns are
calculated during the trading hours each day:

ρhit = logP hit − logP h−1
it , h = 1, · · · , H, i = 1, · · · , n, (44)

where P hit and ρhit respectively denote the price and the 5-minute log-return
of asset i at time h on day t, and H denotes the closing time of the market.
Define ρt such that

ρt =

ρ
1
1t · · · ρ1

nt
...

. . .
...

ρH1t · · · ρHnt

 . (45)

Then the daily returns and the realized covariance matrix of the assets are
given by

rt = ρ>t i, (46)

3The sample starts from 2002-01-02 considering the fact that euro was introduced in
non-physical form on 1999-01-01 and the new euro notes and coins were introduced on
2002-01-01.
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Ct = ρ>t ρt. (47)

Only the times when all three exchange rates are available are included for
calculation, and the days when the number of available 5-minute returns
is less than 80% of the maximum possible number are excluded from the
sample. In other words, only those days which have 5-minute returns more
than 230(= 0.8×24×60/5) remain in the sample. This leaves a total number
of 3,549 days in the sample. The return time series are described in Figure 4
and their descriptive statistics are reported in Table 2. While EUR and GBP
are highly correlated with each other, they are negatively correlated with
JPY. All three currencies have a similar level of variance.

5.3. Individual Stocks

Table 3: Descriptive statistics of the DJIA stock returns. The stocks are General Electric
(GE), American Express (AXP), JP Morgan (JPM), Home Depot (HD), Citi Bank (C),
and IBM (IBM). The sample period is from 2002-01-02 to 2014-12-31, and the mean
(Mean) and the standard deviation (Stdev) values are annualized assuming 250 business
days per year.

Mean Stdev Correlation
GE AE JPM HD C IBM

GE -0.055 0.215 1.000 0.595 0.629 0.559 0.567 0.596
AE 0.073 0.276 0.595 1.000 0.722 0.579 0.642 0.576

JPM 0.046 0.301 0.629 0.722 1.000 0.592 0.698 0.582
HD -0.014 0.218 0.559 0.579 0.592 1.000 0.457 0.588
C -0.426 0.376 0.567 0.642 0.698 0.457 1.000 0.442

IBM -0.018 0.166 0.596 0.576 0.582 0.588 0.442 1.000

The last data sample consists of six stocks from the Dow Jones Industrial
Average (DJIA) index; General Electric (GE), American Express (AXP),
JP Morgan (JPM), Home Depot (HD), Citi Bank (C), and IBM (IBM).
These stocks are chosen for their liquidity following Chiriac and Voev (2011).
The sample period is from 2002-01-02 to 2014-12-31. During the sample
period, stock prices are collected every 5 minutes from 09:30 to 16:00 EST
from Thomson Reuter Tick History and the daily returns and the realized
covariances are computed from these data using the same method described
in Section 5.2. This means that the daily return is defined as the open-to-
close log price difference and overnight jump is ignored. Applying the same
filtering scheme used for the currency data, there are 3,210 days remaining
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Figure 5: Daily returns of the DJIA stocks in the third sample from 2002-01-02 to 2014-
12-31.
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in the sample. The return time series are described in Figure 5 and their
descriptive statistics are reported in Table 3. All the stocks are highly
correlated with each other with the correlation coefficients being greater
than 0.5. Four out of six stocks (GE, HD, C, and IBM) show negative mean
returns during the sample period, and the standard deviations of the returns
range between 0.166 and 0.376. Citi (C), in particular, has the mean return
(-0.426) significantly lower than others and the standard deviation (0.376)
higher than others.

5.4. Test Models

Four GGARCH-based specifications are considered in the empirical anal-
ysis. These models are compared with matrix exponential GARCH by
Kawakatsu (2006), two versions of BEKK by Engle and Kroner (1995), and
an extended version of DCC (Engle, 2002) by Cappiello et al. (2006). In all
models, the covariance matrix is assumed to be a function of only the first
lags of the covariance matrix and the shocks, and the asymmetric effect of
the shocks is taken into account. The test models are summarized in Table 4
together with the number of model parameters.

Table 4: Test models used in the empirical studies. n in the second column is the number
of assets. See Section 5.4 for the details of each model.

Model No. Parameters Description

GGS 1/2n(n+ 1) + 4 GGARCH with scalar coefficients
GGD 1/2n(n+ 3) + 3 GGARCH with diagonal matrix co-

efficients
EXP n(3n+ 1) Matrix exponential GARCH
BEKKS 1/2n(n+ 1) + 3 BEKK with scalar coefficients
BEKKD 1/2n(n+ 7) BEKK with diagonal matrix coeffi-

cients
DCC 1/2n(n+ 7) + 3 DCC with scalar coefficients
DCCG 1/2n(n+ 7) + 4 DCC-GGARCH with scalar coeffi-

cients
GGRM 1/2n(n+ 1) + 2 GGARCH with realized covariance

and QMLE
GGRG 1/2n(n+ 1) + 2 GGARCH with realized covariance

and geodesic length minimization

21



For the mean equation

rt = µ+ et, et ∼ N(0, Ht),

covariance matrix Ht is specified in each model as follows.

GGARCH SCALAR (GGS). The first model is GGARCH in Section 3.1
with scalar coefficients:

Ht = ExpHI (αFt−1), Ft−1 = LogHI (H
′
t−1),

H ′t−1 = (1− a2)Ht−1 + a2C ◦
(
(1− b2)et−1e

>
t−1 + b2ηt−1η

>
t−1

)
.

GGARCH DIAGONAL (GGD). The next model is GGARCH in Sec-
tion 3.1 with diagonal coefficients:

Ht = ExpHI (αFt−1), Ft−1 = LogHI (H
′
t−1),

H ′t−1 = (ii> − ~a~a>) ◦Ht−1 + ~a~a> ◦ C ◦
(
(1− b2)et−1e

>
t−1 + b2ηt−1η

>
t−1

)
.

DCC-GGARCH (DCCG). The third model incorporates GGARCH into
the DCC framework. The covariance matrix is decomposed as follows:

Ht = DHtPtDHt ,

where DHt is a diagonal matrix with the square root of the diagonal entries
of Ht on its diagonal, and Pt is the correlation matrix of Ht. The variances
hit, i = 1, · · · , n, are assumed to follow GJR-GARCH (Glosten et al., 1993)
processes:

hit = αi + βihit−1 + γie
2
it−1 + δiη

2
it−1, αi, βi, γi, δi > 0, βi + γi +

1

2
δi < 1,

and the correlation matrix is assumed to follow a scalar GGARCH process:

Pt = D−1
Rt
RtD

−1
Rt
,

Rt = ExpRI (Ft−1), Ft−1 = αLogRI (R
′
t−1),

R′t−1 = (1− a2)Rt−1 + a2C ◦
(
(1− b2)ẽt−1ẽ

>
t−1 + b2η̃t−1η̃

>
t−1)

)
,

where DRt is a diagonal matrix with the square root of the diagonal entries
of Rt on its diagonal, and ẽt = D−1

Ht
et and η̃t = D−1

Ht
ηt are standardized

shocks and their asymmetric terms.
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GGARCH REALISED (GGRM, GGRG). The last model under the
GGARCH framework is the GGARCH model in the presence of realized
covariances defined in Section 3.2:

Ht = ExpHI (αFt−1), Ft−1 = LogHI (H
′
t−1),

H ′t−1 = (1− a2)Ht−1 + a2Ct−1.

GGRM refers to the model estimated by QMLE, and GGRG refers to the
model estimated by geodesic length minimization. Frobenius norm min-
imization was also considered but is omitted in this paper as the results
are similar to those of GGRD whereas the performance is slightly poorer.
GGRM and GGRG are applied only to the currency and the DJIA stock
samples for which realized covariances are available.

For comparison, the following existing models are also tested. For the
details of each model, the reader is referred to the original articles cited
below.

BEKK SCALAR (BEKKS). The first comparison model is a scalar ver-
sion of the BEKK by Engle and Kroner (1995) given by

Ht = CC ′ + d2Ht−1 + a2et−1e
>
t−1 + b2ηt−1η

>
t−1,

where C is a lower triangular matrix, and a, b, and d are scalars.

BEKK DIAGONAL (BEKKD). The next model is a diagonal version
of BEKK:

Ht = CC ′ +DHt−1D
> +Aet−1e

>
t−1A

> +Bηt−1η
>
t−1B

>,

where C is a lower triangular matrix, and A, B, and D are diagonal matrices.

DCC (DCC). In DCC, the variances are assumed to follow GJR-GARCH
processes as in DCC-GGARCH. For the correlation matrix, a scalar version
of the asymmetric DCC (A-DCC) by Cappiello et al. (2006) is used:

Rt = ((1− a2 − d2)P̄ − b2N̄) + d2Rt−1 + a2ẽt−1ẽ
>
t−1 + b2η̃t−1η̃

>
t−1,

where P̄ = E[ẽt−1ẽ
>
t−1] and N̄ = E[η̃t−1η̃

>
t−1]. P̄ is estimated simultaneously

with other parameters whilst a sample analogue is used as an estimate of
N̄ .
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MATRIX EXPONENTIAL GARCH (EXP). The final model for
comparison is the matrix exponential GARCH by Kawakatsu (2006):

Ht = Exp(Ft),

fij,t = cij + dijfij,t−1 + ai,ijei,t−1 + aj,ijej,t−1 + bi,ijηi,t−1 + bj,ijηj,t−1,

where Exp(·) is the matrix exponential function (this is equivalent to the
Riemmanian exponential map with an identity matrix as the base), and fij,t
is the (i, j)-th element of Ft. Kawakatsu (2006) assumes that the matrix
logarithm of Ht is a linear function of et−1 and ηt−1 in the manner that its
(i, j)-th element is a function of only the i- and j-th elements of et−1 and
ηt−1.

5.5. Model Estimation and Evaluation

The sample period of each sample is divided into two sub-periods (in-
sample and out-of-sample periods), and the model parameters are estimated
every 22 days (about one month) during the second period rolling the sample
window. Between estimation dates, the covariance matrix is updated daily
with the arrival of new returns and/or realized covariance while the model
parameters are fixed to the last estimates. Given the covariance estimates,
the performance metrics defined in Section 4 are calculated during the out-
of-sample period. The size of the sample window is set to 3 years. Therefore,
the in-sample period of the stock index sample is from 1997-01-02 to 1999-
12-31, and the out-of-sample period is from 2000-01-02 to 2014-12-31. These
are respectively from 2002-01-02 to 2004-12-31 and from 2005-01-02 to 2014-
12-31 for the currency and DJIA stock samples. Longer sample windows
were also tested but the overall conclusions were mostly the same as those
derived from the 3-year sample window.

6. Empirical Results

This section analyzes the empirical results. For the sake of space, param-
eter estimation results are not reported here and the focus is given to the
out-of-sample evaluation. Parameter estimation results are available upon
request.

6.1. Performance Evaluation

Table 5, 6, and 7 report the out-of-sample performance of the test mod-
els evaluated respectively from the stock index, currency, and DJIA stock
samples. GGRM and GGRG are applied only to the currency and DJIA
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samples for which realized covariances are measurable. EXP is applied only
to the first two samples as its parameter estimation did not converge well
for the DJIA sample. To facilitate the interpretation of the results, the
ranking of the models based on each evaluation metric is reported below
each metric. Also, two highest rank models are highlighted with dark grey
and two lowest rank models are highlighted with light grey to assist visual-
ization.4 The results from each performance metric are discussed and the
overall performance of the models is assessed.

Table 5: Performance evaluation using the stock index sample. The columns represent the
test models defined in Section 5.4, and the rows represent the evaluation metrics defined
in Section 4 except the first row, logL0, which is the average in-sample likelihood. dSp
and dCEn

99 are for the equally weighted portfolio and before taking absolute values. The
second row of each evaluation metric is the ranks of the models based on the associated
metric. The two highest rank models are highlighted in dark grey and the two lowest rank
models are highlighted in light grey.

GGS GGD EXP BEKKS BEKKD DCC DCCG

logL0 7386 7391 7425 7345 7375 7395 7397
logL 7449 7453 7420 7407 7427 7459 7460

4 3 6 7 5 2 1
dSp 0.676 0.658 1.795 -3.468 -1.536 -0.557 -0.668

4 2 6 7 5 1 3
dCEn99 8.251 6.805 12.978 7.875 9.520 9.879 10.077

3 1 7 2 4 5 6
Smin
p 15.057 15.025 18.545 15.302 15.146 15.115 15.115

2 1 7 6 5 3 4
dw 3.481 3.865 4.376 4.242 4.285 4.793 4.734

1 2 5 3 4 7 6

In terms of logL, GGRM and GGRG perform best followed by DCCG.
Other models show inconsistent results across samples. It might look sur-
prising that the out-of-sample likelihood, logL, is generally greater than the
in-sample likelihood, logL0. This is because when logL is calculated, the
parameters are updated every 22 days, whereas only one set of parameters
are used to calculate the likelihood in each parameter estimation, and logL0

is the average of them.
The error of the portfolio variance measured by dSp is very small in

4In Table 6 and 7, four highest rank models are highlighted with dark grey. This is
because GGRM and GGRG which appear only in these tables are ranked highest with
respect to most metrics. Therefore, highlighting four highest rank models make the com-
parison of the rest models easier.
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Table 6: Performance evaluation using the currency sample. The columns represent the
test models defined in Section 5.4, and the rows represent the evaluation metrics defined
in Section 4 except the first row, logL0, which is the average in-sample likelihood. dSp
and dCEn

99 are for the equally weighted portfolio and before taking absolute values. The
second row of each evaluation metric is the ranks of the models based on the associated
metric. The four highest rank models are highlighted in dark grey and the two lowest
rank models are highlighted in light grey.

GGS GGD EXP BEKKS BEKKD DCC DCCG GGRM GGRG

logL0 8764 8767 8785 8757 8773 8772 8776 8780
logL 8777 8778 8697 8776 8777 8775 8786 8811 8797

6 4 9 7 5 8 3 1 2
dSp 0.542 1.098 -0.289 -1.330 0.428 2.998 1.306 0.640 -0.494

4 6 1 8 2 9 7 5 3
dCEn99 13.826 12.962 9.530 12.645 9.940 12.011 10.095 6.650 8.268

9 8 3 7 4 6 5 1 2
Smin
p 6.262 6.268 6.346 6.360 6.318 6.325 6.300 6.199 6.188

3 4 8 9 6 7 5 2 1
dw 2.781 3.107 3.600 3.036 3.459 3.395 3.436 2.239 2.081

3 5 9 4 8 6 7 2 1
DF 0.435 0.435 0.505 0.435 0.436 0.438 0.432 0.385 0.367

5 4 9 6 7 8 3 2 1
DG 0.874 0.887 1.042 0.870 0.906 0.895 0.902 0.806 0.660

4 5 9 3 8 6 7 2 1
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Table 7: Performance evaluation using the DJIA stock sample. The columns represent the
test models defined in Section 5.4, and the rows represent the evaluation metrics defined
in Section 4 except the first row, logL0, which is the average in-sample likelihood. dSp
and dCEn

99 are for the equally weighted portfolio and before taking absolute values. The
second row of each evaluation metric is the ranks of the models based on the associated
metric. The four highest rank models are highlighted in dark grey and the two lowest
rank models are highlighted in light grey.

GGS GGD BEKKS BEKKD DCC DCCG GGRM GGRG

logL0 14257 14265 14197 14146 14260 14262 14325
logL 14354 14346 14277 14075 14336 14345 14465 14416

3 4 7 8 6 5 1 2
dSp 1.706 -0.453 -2.236 2.132 -1.380 -1.565 0.530 19.893

5 1 7 6 3 4 2 8
dCEn99 9.075 7.448 6.807 13.514 6.202 5.642 3.534 11.105

6 5 4 8 3 2 1 7
Smin
p 15.012 14.905 14.956 15.395 15.520 15.522 15.091 15.259

3 1 2 6 7 8 4 5
dw 5.120 5.332 6.457 7.446 8.753 8.791 6.265 5.329

1 3 5 6 7 8 4 2
DF 9.320 9.590 10.249 10.363 10.380 10.399 8.151 7.602

3 4 5 6 7 8 2 1
DG 1.855 1.872 1.943 2.099 1.872 1.868 1.655 1.485

3 6 7 8 5 4 2 1
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almost all models. For instance, the largest error in the stock index sample
is only -3.5% which comes from BEKKS. The only exception is the large
error (19.9%) by GGRG in the DJIA stock sample. This suggests that the
realized covariance may not be a good proxy for the true covariance in this
particular sample. This, however, does not mean the realized covariance
is not informative: GGRM, which also utilizes the realized covariance but
is estimated via QMLE, still achieves a good performance. Whether the
dimension of the system has an adverse effect on the realized covariance
as a proxy is left for future research. None of the models outperforms the
others consistently.

Contrary to the results from dSp, the error in the tail region measured by
dCEn99 is much larger often exceeding 10%. GGRM performs best in both
the currency and DJIA stock samples, but the error is still substantially
larger compared to dSp. This raises a doubt on the conditional normality
assumption of et. Possible remedies to reduce the error at the tail is discussed
later in Section 6.2.

The rankings based on Sminp and dw are generally similar and consis-
tent across samples favoring GGARCH models, GGRM, GGS, and GGD, in
particular. Daily rebalancing and rebalancing subject to no short sale con-
straint were also tested but the results were not much different from those
reported here. However, it should be noted that the variation of Smin

p across

models is very small. This makes the role of Smin
p as a performance metric

dubious. In fact, the standard deviation of the minimum variance portfo-
lio return turns out to be an inappropriate performance metric in certain
circumstances. This is further discussed in Section 6.3.

As expected, GGRG performs best in terms of the distance metrics, DF

and DG, followed by GGRM. The rankings based on DF and DG are similar
but not identical. Although both measures are valid, DG is preferred in our
context as it is defined in accordance with the model framework.

Comparing the overall performances of the models, the most remarkable
finding is that when the realized covariance is available, the models that
utilize the realized covariance, i.e., GGRM and GGRG, dominate other
models in terms of almost all performance metrics including those metrics
that are not directly related to the realized covariance: These models are
expected to perform well in terms of DF and DR, but the high ranking
of GGRG with respect to LogL is surprising considering the fact that the
estimation criterion of GGRG is not to maximize the likelihood function
but to minimize the distance between the estimated covariance and the
realized covariance. Noureldin et al. (2012) also find that their realized
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covariance-based HEAVY model outperforms conventional GARCH models
based on daily returns. Between GGRM and GGRG, GGRM performs
more consistently. This is because GGRM utilizes information from both
the returns and realized covariances. GGRG, on the other hand, uses only
realized covariance and, although geodesic length minimization is easier to
perform, the parameter estimation relies heavily on how well the realized
covariance reflects the true covariance.

Apart from GGRM and GGRG, it is difficult to pinpoint the best per-
forming model at the first glance. It is rather striking that the performance
of the models varies widely not only across data samples but also across
performance metrics. Table 8 reports the correlation between the model
rankings. Unexpectedly, logL is highly correlated with both DF and DG,
whereas dSp and dCEn99 are weakly, sometimes even negatively, correlated
with other metrics. This emphasizes the necessity of evaluating models using
multiple metrics and choosing appropriate metrics for different purposes.

Table 8: Correlation between rankings. Correlations are calculated from the model rank-
ings reported in Table 5, 6, and 7.

logL dSp dCEn99 Smin
p dw DF DG

logL 1.00
dSp 0.31 1.00
dCEn99 0.26 0.41 1.00
Smin
p 0.60 0.34 0.21 1.00

dw 0.40 -0.15 0.08 0.63 1.00
DF 0.86 -0.10 0.07 0.72 0.81 1.00
DG 0.71 -0.14 0.17 0.31 0.77 0.69 1.00

Despite the seemingly inconsistent results, a careful inspection reveals
several important points addressed below. First, it can be seen that GGARCH
models outperform their BEKK counterparts; compare GGS with BEKKS
and GGD with BEKKD. Meanwhile, applying the GGARCH model to the
evolution of the correlation matrix in the DCC framework (DCCG) does
not seem to improve over DCC significantly. EXP, contrary to its high in-
sample likelihood values, performs worst out-of-sample. In general, a good
in-sample performance in terms of logL0 does not lead to a good out-of-
sample performance. Another important observation is that the diagonal
versions of GGARCH and BEKK, despite more parameters, do not out-
perform their scalar counterparts. This suggests that simply increasing the
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degrees of freedom under the same model structure does not enhance the
performance. Overall, GGARCH models perform best followed by DCC
models, which are then followed by BEKK models.

Table 9 provides a summary of the results, in which the numbers are av-
erage rankings across data samples. GGRM, GGRG, and EXP are excluded
as they are applied to only some of three data samples and their out/under-
performances are rather obvious. Without these models, the remaining six
models are ranked again from 1 (best) to 6 (worst) in each sample and the
ranks are averaged across the samples. The table clearly shows that the
best performances (dark grey cells) are usually found in GGARCH models
and the worst performances (light grey cells) are usually found in BEKK
models. This confirms the previous conclusion.

Table 9: Average ranking of the test models. Without GGRM, GGRG, and EXP, the
remaining six models are ranked again from 1 (best) to 6 (worst) in each sample, and the
ranks are averaged across the samples. The two highest rank models are highlighted in
dark grey and the two lowest rank models are highlighted in light grey.

GGS GGD BEKKS BEKKD DCC DCCG

logL 3.0 2.3 5.3 4.7 4.0 1.7
dSp 3.3 2.0 5.7 3.7 3.0 3.3
dCEn99 4.7 3.3 3.0 3.7 3.3 3.0
Smin
p 2.0 1.3 4.7 4.3 4.3 4.3

dw 1.0 2.3 2.7 4.7 5.0 5.3
DF 2.0 2.0 3.5 4.5 5.5 3.5
DG 1.5 3.5 3.0 6.0 3.5 3.5

Figure 6 and 7 display one day forecasts of the standard deviation of the
return on GE and AE, respectively, and Figure 8 displays one day forecasts of
their correlation, for some selected models.5 Comparing GGS with BEKKS,
the standard deviation estimated by GGS is more responsive to the shocks,
whereas the correlation from GGS is more persistent. The difference between
the models is more prominent during volatile market periods. This can
be attributed to two facts: With the covariance adjustment term C, GGS
produces more stable correlations while allowing the standard deviations
move more extremely. The geodesic length between two matrices increases
exponentially as one matrix approaches a singular point. This mitigates
abrupt correlation changes especially toward singularity.

5Only one pair is reported to save the space. Other pairs are available upon request.
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DCC, owing to its structure that separates variance and correlation,
generates variances that are sensitive to the shocks. However, the correlation
from DCC, unexpectedly, turns out to be most persistent among the models
tested. Although this is intuitively appealing, the overall results do not
support DCC.

Finally, GGRM features the least persistent variance and correlation esti-
mates. This suggests that the realized covariance contains more information
about the covariance than the shocks. In fact, the weight on Ct−1 in GGRM
approximated by αa2 is 0.2437 on average, whilst the weight on et−1e

>
t−1 in

GGS approximated by αa2 is only 0.0235. Even though the size of et−1e
>
t−1

can be much larger than that of Ct−1, the weight difference appears to be
substantial. It is worth noting that GGRM, despite its sensitive estimates,
results in low turnover. Compared to GGRM as a reference, DCC performs
well in fitting the variances, whilst BEKKS fits the correlation best. How-
ever, GGS seems to find a good compromise between the variance estimation
and correlation estimation, and outperforms the other two.

6.2. Risk Measurement

As evidenced in the previous results, the forecast error at the tail mea-
sured by dCEn99 is substantially larger than that of variance (dSp), and there
is a lack of consistency in ranking between these performance metrics. This
necessitate the need of validating the models with regard to risk measures,
especially if the primary purpose of covariance estimation is to measure risk.
Figure 9 displays the conditional expectation measures defined in (36) and
(37) without the absolute value operation in the numerator. This is to re-
veal the direction of the estimation error. In an ideal case in which the
model is correctly specified, the errors will be close to zero across all prob-
ability levels. However, the charts show that all the models underestimate
the conditional expectation at both tails, and the underestimation is severer
on the negative side. This is in accordance with the well-known fat tailed,
left-skewed distribution of asset returns.

If the objective of the covariance estimation is to measure risk, it is
worth considering a tailored estimation method for the particular purpose
so as to enhance the accuracy of risk measurement. Four methods that aim
to enhance risk measurement are considered here. The first method is to
replace the normal distribution with a fat-tailed distribution. In particular,
student t-distribution is considered. In this case, the QMLE is given by

max
θ

Ti∑
t=1

c(n, d)− 1

2
log |Ht| −

n+ d

2
log

(
1 +

e>t H
−1
t et

d− 2

)
, (48)
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Figure 6: One day forecast of the standard deviation of GE.
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Figure 7: One day forecast of the standard deviation of AE.
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Figure 8: One day forecast of the correlation between GE and AE.
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(a) Stock Indexes

(b) Currencies

(c) DJIA stocks

Figure 9: Conditional expectations CEp
α and CEn

α .
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where

c(n, d) = log Γ

(
n+ d

2

)
− log Γ

(
d

2

)
− n

2
log π − n

2
log(d− 2),

Γ(·) is the gamma function, and d is the degrees of freedom of the distri-
bution, which is estimated simultaneously with other parameters.6 When
t-distribution is used, the probability density function in (35) also needs to
be replaced by the probability density function of the t-distribution.

The second and third methods are rather ad hoc in that they selectively
choose samples around the tail of the distribution while maintaining the
normality assumption. More precisely, the second method uses the historical
returns only when the absolute value of the portfolio return exceeds its
sample standard deviation:

|w>et| > w>H̄w, (49)

where H̄ is the sample covariance of et. The third method chooses the
samples only when at least one asset return is lower than the negative value
of its sample standard deviation:

eit < −
√
h̄i, (50)

where h̄i is the sample variance of eit. A drawback of these methods is the
loss of information form the omitted data.

The last method borrows the idea of importance sampling. Importance
sampling is a simulation technique that reduces the simulation error by
drawing more samples from the region of interest. This is done by replacing
the original density function f with a new density function g and multiplying
the samples from the new density function by the likelihood ratio f/g:

f → g
f

g
.

For the application of importance sampling in risk measurement, see Glasser-
man (2003) or Glasserman and Li (2005). The fourth method is to apply
importance sampling reversely to give more emphasis on the samples from
the tail: Define a new density function that has a higher density around the

6Following Kawakatsu (2006), we use a slightly different form of likelihood from the
usual formulation so that the variance of et becomes Ht.
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tail, obtain the likelihood ratio, and multiply the inverse of the likelihood
ratio to the data in the sample. The procedure is summarized below.

• Likelihood Ratio. Assume that et are random samples fromN(0, H̄).
The new density function is defined by shifting the mean of et by λ.
Then, the likelihood ratio is given by

l(et) = exp

(
−e>t H̄−1λ+

1

2
λ>H̄−1λ

)
.

• New Density Function. Following Glasserman et al. (1999), λ is
determined by solving

λ = argmax
x

exp

(
−1

2
x>H̄−1x

)
subject to x>w ≤ L,

where w is the portfolio weight and L is a loss level. The above problem
has a closed form solution

λ =
LH̄w

w>H̄w
.

L is set to −0.5
√
w>H̄w.

• Estimation. In QMLE, multiply the log-likelihood function at time
t in (26) by 1/l(et).

The results of these four alternative estimation methods applied to GGS
are reported in Table 10, 11, and 12. All four methods reduce the error at
the tail compared to the original method (Normal), but the most prominent
enhancement is found in the first (t-dist) and the second (Tail) methods. In
particular, t-distribution significantly improves tail risk measurement with-
out any substantial performance loss in terms of other metrics. The third
(Negative) and fourth (IS) methods which put more weights on the negative
returns are not as effective as the first two methods. Except t-distribution,
all three methods incur significant overestimation of the variance (negative
dSp) in order to reduce the error at the tail. This suggests that even after
accounting for the heteroscedasticity, the asset returns are still skewed and
fat tailed. Figure 10 displays the conditional expectation measures for the
alternative methods. The charts show that t-distribution fits the negative
side of the distribution remarkably well, but it comes at a cost of slight
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underestimation on the positive side of the distribution. As far as risk is
concerned, t-distribution appears to be a better choice than normal distri-
bution.

Table 10: Performance evaluation of the different estimation methods of GGS using the
stock Index sample. Normal is the results of the original QMLE and the other four columns
are the results of four alternative methods described in Section 6.2 in the same order.

Normal t-dist Tail Negative IS

dSp 0.676 0.895 -40.106 -24.900 -15.511
1 2 5 4 3

dCEn99 8.251 2.716 0.357 4.686 7.594
5 2 1 3 4

Smin
p 15.057 15.056 16.186 15.145 15.157

2 1 5 3 4
dw 3.481 3.449 4.388 2.848 4.416

3 2 4 1 5

6.3. Minimum Variance Portfolio

The asset weights of the minimum variance portfolios are summarized in
Table 13, 14, and 15 for each sample. As expected from the small variation
of dSmin

p , the mean weights are similar across models. Only GGRG shows
a rather different weight distribution, especially in the DJIA sample. This
is probably due to the different estimation method employed. It is worth
noting that GGARCH models generally yield more stable weights as evi-
denced from the standard deviation of the weights. This results in the lower
turnover of the portfolios obtained from these models.

The standard deviation of the minimum variance portfolio return is often
used to assess covariance estimation models; see Chiriac and Voev (2011),
and Han et al. (2016), for example. However, as illustrated below, the results
based on this criterion can be misleading. Suppose that the true covariance
matrix is H, and the estimated covariance matrix is Ĥ. The minimum
variance portfolio is given by

w =
Ĥ−1i

i>Ĥ−1i
,

and the variance of the return on this minimum variance portfolio will be
Vp = w>Hw. Let dH−1 (here -1 is not inverse) denote the difference (Ĥ−1−
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Table 11: Performance evaluation of the different estimation methods of GGS using the
currency sample. Normal is the results of the original QMLE and the other four columns
are the results of four alternative methods described in Section 6.2 in the same order.

Normal t-dist Tail Negative IS

dSp 0.542 0.766 -41.824 -22.713 -16.136
1 2 5 4 3

dCEn99 13.826 0.773 -0.568 8.082 12.832
5 2 1 3 4

Smin
p 6.262 6.258 6.670 6.301 6.384

2 1 5 3 4
dw 2.781 2.817 3.561 2.348 3.372

2 3 5 1 4
DF 0.435 0.434 1.145 0.924 0.518

2 1 5 4 3
DG 0.874 0.873 1.501 1.329 0.935

2 1 5 4 3

Table 12: Performance evaluation of the different estimation methods of GGS using the
DJIA stock sample. Normal is the results of the original QMLE and the other four columns
are the results of four alternative methods described in Section 6.2 in the same order.

Normal t-dist Tail Negative IS

dSp 1.706 3.072 -42.867 -21.845 -16.784
1 2 5 4 3

dCEn99 9.075 -2.251 -2.377 5.819 4.565
5 1 2 4 3

Smin
p 15.012 14.988 16.439 15.341 15.085

2 1 5 4 3
dw 5.120 4.860 6.588 5.499 6.857

2 1 4 3 5
DF 9.320 9.593 27.695 14.058 13.850

1 2 5 4 3
DG 1.855 1.870 2.840 2.337 2.105

1 2 5 4 3
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(a) Stock Indexes

(b) Currencies

(c) DJIA stocks

Figure 10: Conditional expectations CEp
α and CEn

α from different estimation methods of
GGS.
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Table 13: Minimum variance portfolio weights: Stock Indexes.

GGS GGD EXP BEKKS BEKKD DCC DCCG

S&P Mean 0.403 0.401 0.392 0.410 0.401 0.408 0.410
Stdev 0.132 0.144 0.193 0.159 0.150 0.174 0.177
Min 0.103 0.092 -1.072 -0.033 -0.017 0.049 0.062
Max 0.921 0.860 0.831 1.032 0.900 1.105 1.087

FTSE Mean 0.338 0.336 0.362 0.339 0.359 0.337 0.337
Stdev 0.146 0.156 0.205 0.184 0.174 0.188 0.193
Min -0.054 -0.063 -0.135 -0.145 -0.058 -0.153 -0.129
Max 0.640 0.699 1.090 0.948 0.713 0.731 0.772

NIKKEI Mean 0.259 0.263 0.246 0.251 0.240 0.255 0.253
Stdev 0.128 0.128 0.165 0.145 0.145 0.142 0.141
Min 0.012 0.007 -0.097 -0.211 -0.033 0.010 0.008
Max 0.657 0.659 0.982 0.768 0.768 0.691 0.705

Table 14: Minimum variance portfolio weights: Currencies.

GGS GGD EXP BEKKS BEKKD DCC DCCG GGRM GGRG

EUR Mean 0.278 0.279 0.276 0.280 0.280 0.281 0.282 0.285 0.315
Stdev 0.155 0.163 0.181 0.178 0.180 0.178 0.174 0.137 0.113
Min 0.017 -0.050 -0.064 -0.027 -0.137 -0.056 -0.079 -0.021 0.051
Max 0.771 0.841 0.746 0.994 0.949 0.925 0.869 0.705 0.674

GBP Mean 0.286 0.290 0.311 0.292 0.298 0.300 0.301 0.290 0.287
Stdev 0.151 0.160 0.187 0.169 0.179 0.177 0.170 0.139 0.112
Min -0.193 -0.152 -0.075 -0.373 -0.173 -0.186 -0.119 -0.047 0.024
Max 0.639 0.769 0.826 0.698 0.806 0.932 0.832 0.791 0.662

JPY Mean 0.436 0.431 0.414 0.428 0.421 0.419 0.418 0.424 0.398
Stdev 0.077 0.089 0.120 0.082 0.101 0.106 0.112 0.086 0.084
Min 0.225 0.172 -0.125 0.188 0.084 0.048 0.008 0.121 0.090
Max 0.618 0.646 0.781 0.713 0.792 0.742 0.756 0.604 0.587

41



Table 15: Minimum variance portfolio weights: DJIA stocks.

GGS GGD BEKKS BEKKD DCC DCCG GGRM GGRG

GE Mean 0.220 0.222 0.222 0.207 0.219 0.220 0.225 0.168
Stdev 0.157 0.161 0.205 0.187 0.199 0.198 0.186 0.147
Min -0.045 -0.045 -0.103 -0.239 -0.174 -0.183 -0.276 -0.206
Max 0.823 0.861 1.094 0.976 0.978 0.936 0.830 0.687

AE Mean 0.034 0.036 0.028 0.049 0.044 0.042 0.027 0.107
Stdev 0.140 0.153 0.169 0.188 0.168 0.167 0.137 0.120
Min -0.268 -0.267 -0.397 -0.402 -0.276 -0.275 -0.405 -0.281
Max 0.373 0.471 0.428 0.979 0.714 0.717 0.384 0.346

JPM Mean 0.020 0.012 0.025 0.032 0.023 0.024 0.023 0.049
Stdev 0.074 0.079 0.135 0.115 0.118 0.121 0.083 0.080
Min -0.167 -0.141 -0.432 -0.343 -0.169 -0.183 -0.186 -0.186
Max 0.266 0.267 0.891 0.371 0.656 0.722 0.396 0.408

HD Mean 0.152 0.154 0.152 0.154 0.156 0.155 0.152 0.169
Stdev 0.137 0.134 0.146 0.148 0.170 0.170 0.153 0.116
Min -0.058 -0.032 -0.299 -0.301 -0.109 -0.108 -0.147 -0.035
Max 0.487 0.514 0.546 0.638 0.655 0.663 0.723 0.656

C Mean 0.011 0.004 0.012 -0.002 0.032 0.032 0.021 0.042
Stdev 0.142 0.154 0.166 0.158 0.169 0.169 0.164 0.112
Min -0.224 -0.224 -0.349 -0.352 -0.238 -0.234 -0.329 -0.268
Max 0.401 0.438 0.444 0.567 0.630 0.632 0.420 0.344

IBM Mean 0.563 0.573 0.561 0.560 0.526 0.527 0.552 0.465
Stdev 0.211 0.216 0.240 0.228 0.236 0.236 0.222 0.227
Min 0.137 0.151 0.002 0.001 0.039 0.031 0.045 0.022
Max 1.069 1.054 1.310 1.314 1.032 1.028 1.019 0.932
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H−1). The variance of the portfolio return can be approximated as follows.

w>Hw =
i>(Ĥ−1 + dH−1 + dH−1HdH−1)i

(i>Ĥ−1i)2
≈ 1

i>Ĥ−1i
+

i>dH−1i

(i>Ĥ−1i)2
.

While it is straightforward to show that the variance is minimized when
Ĥ = H, the effect of the estimation error on the portfolio variance is obscure
and will depend on both the size and sign of the error. To see this, consider
the following illustrative example.

H =

[
1 0.5

0.5 1

]
, Ĥ = H + dH.

Table 16 reports the variance of the minimum variance portfolio return for
different values of dH. The results clearly show that the variance of the
portfolio is not proportional to the estimation error measured by the Frobe-
nius norm. Although a small variance of the minimum variance portfolio
return is likely to indicate a good covariance estimation, the results based on
this criterion will always have to validated using other performance metrics.

6.4. Principal Geodesic Analysis

Table 17 reports the results of PGA applied to the DJIA stocks. It
also reports the results of the usual PCA applied to the tangent vectors
between Ht−1 and Ht, LogHt−1

(Ht). It is remarkable that only the first 2
principal components out of 21 explain more than 90% of the variation of the
covariance matrix. Especially when the PGA is applied, the first component
has an explanatory power of remarkable 87%. This result is encouraging as
it implies that a parsimonious specification might be obtainable without any
significant loss of information. To see the meaning of the first two principal
components, a covariance matrix is shifted along the principal axes of these
components. For PGA, the intrinsic mean is used as the initial covariance,
and for PCA, the sample covariance is used as the initial covariance. The
shifted covariances Hkp and Hkm are obtained from

Hkp = ExpHI

(
|αk|Vk

)
, Hkm = ExpHI

(
−|αk|Vk

)
, k = 1, 2, (51)

whereHI is the initial covariance, and |αk| is the sample mean of the absolute
value of αki in (10). The results are reported in Table 18 for PGA and in
Table 19 for PCA. In the tables, the upper triangular part of each matrix
contains variances and covariances, and the lower triangular part below the
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Table 16: Minimum variance portfolio sensitivity analysis.

dH1 dH2 dH12 ||dH|| Vp

0 0 0 0.000 0.750
0 0 0.1 0.141 0.750
0 0 -0.1 0.141 0.750
0 0.1 0 0.100 0.752
0 0.1 0.1 0.173 0.753
0 0.1 -0.1 0.173 0.751
0 -0.1 0 0.100 0.753
0 -0.1 0.1 0.173 0.755
0 -0.1 -0.1 0.173 0.752

0.1 0 0 0.100 0.752
0.1 0 0.1 0.173 0.753
0.1 0 -0.1 0.173 0.751
0.1 0.1 0 0.141 0.750
0.1 0.1 0.1 0.200 0.750
0.1 0.1 -0.1 0.200 0.750
0.1 -0.1 0 0.141 0.760
0.1 -0.1 0.1 0.200 0.766
0.1 -0.1 -0.1 0.200 0.757

-0.1 0 0 0.100 0.753
-0.1 0 0.1 0.173 0.755
-0.1 0 -0.1 0.173 0.752
-0.1 0.1 0 0.141 0.760
-0.1 0.1 0.1 0.200 0.766
-0.1 0.1 -0.1 0.200 0.757
-0.1 -0.1 0 0.141 0.750
-0.1 -0.1 0.1 0.200 0.750
-0.1 -0.1 -0.1 0.200 0.750
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main diagonal contains correlation coefficients. Table 18 shows that the first
principal component is related to a co-movement of the variance terms whilst
the correlation terms remain still (they move in the same direction but only
slightly). The second principal component is, albeit less obvious, related to
an independent movement of Citi Bank (C). In fact, Citi Bank has a much
larger variance compared to other stocks, as shown in the sample covariance
(HI) in Table 19. The meaning of the principal components obtained form
PCA is less clear: Both the first and second principal components seem
relevant to the large variance of Citi Bank. The larger contribution and
clearer meaning of the first component of PGA makes PGA more attractive
than the PCA applied to LogHt−1

(Ht). The results of PGA may serve as a
basis for development of a parsimonious covariance model. Proposition of a
parsimonious model based on PGA is beyond the scope of this paper and
left for future research.

Table 17: PGA (left) and PCA (right) results of the realized covariance matrices of the
DJIA stock sample.

Eigenvalue Percentage Cumulative Eigenvalue Percentage Cumulative

Ht −HI Ht −Ht−1

1.23E-07 87.326 87.326 1.57E-05 77.282 77.282
6.75E-09 4.803 92.129 3.00E-06 14.799 92.080
2.31E-09 1.647 93.776 6.89E-07 3.396 95.477
2.12E-09 1.509 95.285 3.07E-07 1.514 96.991
1.91E-09 1.362 96.647 1.84E-07 0.909 97.900

6.5. Parsimonious Specification

In this section, a parsimonious version of the models in which the con-
stant matrix is fixed is investigated. This is often called covariance targeting.
The n2 terms in the number of parameters in Table 4 are from the constant
matrix except for EXP, and fixing the constant matrix makes the number
of parameters of O(n).

For DCC, covariance targeting is straightforward: a sample analogue can
be used as an estimate of P̄ . But it is less straightforward for GGARCH
models as the unconditional expectation of Ht is difficult to obtain due to
the exponential form. From Figure 1, it can be seen that HI can be rewritten
as

HI = ExpH′t−1

(
1

1− α
Ft−1

)
, Ft−1 = LogH′t−1

(Ht). (52)

Ft−1 is the tangent vector of the geodesic emanating from H ′t−1 to Ht. Let
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Table 18: Covariance matrix movement along the first two principal axes obtained by
PGA. HI is the initial covariance, and Hkp and Hkm are the covariances shifted along the
k-th principal axis using the formulae in (51). The lower matrix in each shifted covariance
is the change defined as (Hkp −HI)/HI or (Hkm −HI)/HI .

GE AE JPM HD C IBM GE AE JPM HD C IBM

HI

GE 0.92 0.40 0.43 0.35 0.45 0.30
AE 0.41 1.02 0.53 0.37 0.53 0.31
JPM 0.40 0.47 1.24 0.40 0.69 0.33
HD 0.36 0.36 0.35 1.02 0.40 0.29
C 0.38 0.43 0.51 0.32 1.48 0.33
IBM 0.39 0.38 0.37 0.36 0.34 0.63

H1p H1m

GE 2.27 1.25 1.35 0.99 1.42 0.82 0.87 0.36 0.40 0.27 0.47 0.23
AE 0.49 2.93 1.79 1.12 1.81 0.89 0.39 0.98 0.53 0.30 0.59 0.24
JPM 0.48 0.56 3.51 1.19 2.21 0.94 0.39 0.49 1.19 0.31 0.80 0.26
HD 0.45 0.45 0.44 2.13 1.23 0.74 0.34 0.35 0.34 0.72 0.36 0.20
C 0.44 0.50 0.55 0.40 4.53 0.96 0.35 0.41 0.51 0.29 2.09 0.29
IBM 0.48 0.46 0.44 0.45 0.40 1.28 0.36 0.36 0.34 0.34 0.29 0.46

GE 1.46 2.16 2.11 1.82 2.17 1.71 -0.49 -0.59 -0.58 -0.55 -0.58 -0.53
AE 0.19 1.86 2.35 2.04 2.41 1.90 -0.15 -0.55 -0.61 -0.57 -0.62 -0.55
JPM 0.18 0.18 1.83 2.01 2.20 1.87 -0.13 -0.15 -0.54 -0.57 -0.59 -0.54
HD 0.25 0.25 0.24 1.08 2.09 1.58 -0.17 -0.17 -0.16 -0.41 -0.57 -0.51
C 0.15 0.15 0.09 0.22 2.07 1.94 -0.11 -0.12 -0.06 -0.15 -0.57 -0.55
IBM 0.22 0.21 0.20 0.26 0.18 1.02 -0.15 -0.13 -0.12 -0.17 -0.10 -0.40

H2p H2m

GE 0.47 0.16 0.18 0.16 0.19 0.14 0.99 0.44 0.49 0.46 0.47 0.39
AE 0.35 0.46 0.21 0.16 0.20 0.14 0.43 1.09 0.55 0.47 0.52 0.39
JPM 0.35 0.40 0.56 0.17 0.28 0.15 0.43 0.46 1.31 0.51 0.65 0.42
HD 0.30 0.30 0.30 0.60 0.17 0.14 0.39 0.38 0.38 1.42 0.48 0.41
C 0.34 0.38 0.48 0.28 0.63 0.15 0.44 0.47 0.53 0.38 1.13 0.40
IBM 0.33 0.33 0.32 0.30 0.30 0.38 0.43 0.40 0.40 0.37 0.41 0.85

GE -0.06 -0.09 -0.08 -0.23 0.04 -0.24 0.08 0.12 0.12 0.31 0.04 0.31
AE -0.03 -0.05 0.00 -0.20 0.11 -0.20 0.05 0.06 0.04 0.27 -0.02 0.27
JPM -0.03 0.04 -0.04 -0.21 0.17 -0.22 0.05 -0.02 0.06 0.30 -0.06 0.29
HD -0.06 -0.02 -0.04 -0.29 -0.10 -0.31 0.08 0.05 0.07 0.38 0.21 0.42
C -0.10 -0.04 0.00 -0.10 0.41 -0.13 0.15 0.09 0.05 0.18 -0.24 0.22
IBM -0.08 -0.04 -0.07 -0.04 -0.14 -0.27 0.09 0.06 0.09 0.04 0.21 0.34
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Table 19: Covariance matrix movement along the first two principal axes obtained by
PCA. HI is the initial covariance, and Hkp and Hkm are the covariances shifted along the
k-th principal axis using the formulae in (51). The lower matrix in each shifted covariance
is the change defined as (Hkp −HI)/HI or (Hkm −HI)/HI .

GE AE JPM HD C IBM GE AE JPM HD C IBM

HI

GE 2.30 1.29 1.38 0.98 1.55 0.81
AE 0.49 3.01 1.84 1.14 2.00 0.90
JPM 0.48 0.56 3.59 1.21 2.43 0.95
HD 0.45 0.46 0.45 2.05 1.32 0.75
C 0.42 0.48 0.53 0.38 5.85 1.01
IBM 0.47 0.46 0.45 0.46 0.37 1.28

H1p H1m

GE 2.55 1.52 1.71 1.12 2.07 0.93 1.78 0.86 0.77 0.71 0.77 0.58
AE 0.51 3.44 2.21 1.32 2.61 1.05 0.45 2.09 1.15 0.78 1.05 0.62
JPM 0.51 0.57 4.34 1.46 3.41 1.18 0.39 0.54 2.18 0.75 1.00 0.54
HD 0.47 0.48 0.47 2.21 1.69 0.85 0.41 0.42 0.39 1.69 0.75 0.53
C 0.44 0.48 0.56 0.39 8.66 1.32 0.41 0.51 0.48 0.41 2.01 0.54
IBM 0.49 0.48 0.48 0.48 0.38 1.40 0.43 0.42 0.36 0.40 0.38 1.02

GE 0.11 0.17 0.24 0.14 0.34 0.15 -0.23 -0.33 -0.44 -0.28 -0.50 -0.28
AE 0.04 0.14 0.20 0.16 0.31 0.16 -0.09 -0.30 -0.38 -0.31 -0.47 -0.31
JPM 0.07 0.02 0.21 0.20 0.40 0.23 -0.18 -0.04 -0.39 -0.38 -0.59 -0.43
HD 0.04 0.04 0.05 0.08 0.28 0.14 -0.09 -0.09 -0.12 -0.18 -0.43 -0.29
C 0.04 0.00 0.05 0.01 0.48 0.30 -0.03 0.08 -0.09 0.07 -0.66 -0.46
IBM 0.04 0.04 0.07 0.05 0.03 0.09 -0.09 -0.08 -0.19 -0.13 0.03 -0.20

H2p H2m

GE 1.73 0.76 0.98 0.65 1.46 0.59 2.84 1.92 1.80 1.32 1.82 1.02
AE 0.46 1.54 1.08 0.61 1.50 0.56 0.52 4.73 2.73 1.73 2.75 1.29
JPM 0.45 0.52 2.75 0.75 2.23 0.69 0.51 0.60 4.40 1.68 2.87 1.22
HD 0.40 0.40 0.37 1.52 0.92 0.50 0.49 0.50 0.50 2.53 1.74 0.98
C 0.38 0.41 0.46 0.25 8.69 0.75 0.48 0.56 0.61 0.49 5.02 1.28
IBM 0.45 0.45 0.42 0.41 0.26 1.00 0.49 0.48 0.47 0.50 0.46 1.52

GE -0.25 -0.41 -0.29 -0.34 -0.05 -0.27 0.23 0.48 0.31 0.34 0.18 0.26
AE -0.06 -0.49 -0.41 -0.46 -0.25 -0.38 0.06 0.57 0.48 0.52 0.38 0.42
JPM -0.06 -0.06 -0.23 -0.38 -0.08 -0.28 0.06 0.07 0.23 0.38 0.18 0.27
HD -0.12 -0.12 -0.18 -0.26 -0.30 -0.33 0.09 0.09 0.12 0.23 0.32 0.31
C -0.10 -0.13 -0.14 -0.33 0.48 -0.26 0.15 0.19 0.15 0.28 -0.14 0.26
IBM -0.05 -0.02 -0.06 -0.12 -0.31 -0.22 0.04 0.04 0.06 0.08 0.25 0.19
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H̄ and M̄ denote E[et−1e
>
t−1] and E[ηt−1η

>
t−1], respectively. Then,

E[Ht] = H̄,

E[H ′t−1] =
(
ii> − ~a~a>

)
◦ H̄ + ~a~a> ◦ C ◦ ((1− b2)H̄ + b2M̄).

HI is approximated by substituting Ht and H ′t−1 in (52) with their expected
values:

HI = ExpH̄′

(
1

1− α
F

)
, F = LogH̄′(H̄), (53)

where H̄ ′ denotes E[H ′t−1]. Sample analogues are used as estimates of H̄
and M̄ .

The results of covariance targeting for some selected models are reported
in Table 20. Surprisingly, fixing the constant matrix does almost no harm to
the overall performance regardless of the model. In fact, the fixed constant
matrix models outperform their counterparts in terms of some performance
metrics. The loss of information seems to be offset by the gain in robustness.

Table 20: Covariance targeting. Est columns are the original results without covariance
targeting, and Fix columns are the results from covariance targeting.

GGS GGD DCC DCCG GGRM
Est Fix Est Fix Est Fix Est Fix Est Fix

logL 14354 14334 14346 14312 14336 14341 14345 14345 14465 14424
3 9 4 10 8 7 6 5 1 2

dSp 1.706 -1.651 -0.453 -0.886 -1.380 -1.859 -1.565 -2.020 0.530 -1.198
8 7 1 3 5 9 6 10 2 4

dCEn99 9.075 9.354 7.448 9.465 6.202 6.034 5.642 5.469 3.534 3.496
8 9 7 10 6 5 4 3 2 1

Smin
p 15.012 14.928 14.905 14.923 15.520 15.544 15.522 15.538 15.091 14.915

5 4 1 3 7 10 8 9 6 2
dw 5.120 5.542 5.332 5.593 8.753 8.814 8.791 8.877 6.265 6.011

1 3 2 4 7 9 8 10 6 5
DF 9.320 9.733 9.590 9.516 10.380 10.438 10.399 10.461 8.151 8.190

3 6 5 4 7 9 8 10 1 2
DG 1.855 1.922 1.872 1.933 1.872 1.871 1.868 1.871 1.655 1.734

3 9 8 10 7 6 4 5 1 2

7. Conclusion

In this paper, new multivariate GARCH models (GGARCH) are de-
veloped. These models preserve the geometric structure of the covariance
matrix without any arbitrary restrictions by respecting the inherent geo-
metric features of the covariance matrix. One class of models utilizes asset
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returns whilst the other class utilizes realized covariance. For the latter
class of models, a new parameter estimation method based on geometrically
correct notions of distance between covariance matrices is developed.

Several versions of the new models are tested on three data samples
and compared with existing models: BEKK, DCC, and matrix exponential
GARCH. These models are assessed via various out-of-sample performance
metrics. Not only the conventional performance evaluation metrics such as
out-of-sample likelihood, but also new performance metrics that are partic-
ularly suitable for risk management are introduced.

The empirical results suggest that the GGARCH models outperform the
existing models, and realized covariance based models outperform return
based models. In particular, a realized covariance based GGARCH model
estimated via QMLE performs best. This implies that realized covariances
carry more information on the future covariance but they do not cover the
informational contents of asset returns. Another important finding is that
there is a lack of consistency among the performance metrics. This casts a
doubt on the previous conclusions in the literature that are drawn from a
single or a small number of evaluation methods.

An investigation of time series variation of covariance matrices via prin-
cipal geodesic analysis shows that the first principal component can explain
87% of the variation of a 6×6 covariance matrix, and the cumulative explana-
tory power of the first two components is over 92%. This result suggests
potential for a parsimonious specification of covariance dynamics for a large
dimensional system without sacrificing significant amount of information.
We leave this topic as a future research.
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