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Abstract

I examine the impact of high frequency (“fast”) market making on liquidity, price discovery and

institutional traders’ returns in a setting with market fragmentation. Faster market makers more

precisely monitor orderflows across trading venues than slower market makers. If every market

maker’s speed increases, I find that liquidity and price discovery improve at all trading venues while

institutional traders’ returns decline. When the market makers’ speeds increase at a specific trading

venue, liquidity and price discovery at that venue improve and spillovers affect the other venues. If

the market makers at the other trading venues are sufficiently slow, the spillovers positively affect

liquidity and price discovery at those venues; otherwise, the spillovers harm liquidity and price

discovery.

JEL-Classification: D4, D62, G1, G20, L1
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Trading in today’s financial markets is fragmented across many trading venues that operate in the

mili- and microsecond frequencies.1 Markets operate at such speeds that the IEX’s recent attempt to

register as an exchange with the US Securities and Exchange Commission (SEC) received dozens of

comments concerning the 350 microsecond delay it imposes on orders (SEC (2015)).2 In 2014, the SEC

published separate white papers on market fragmentation and high frequency trading in the US (SEC

(2013, 2014)). However, the pervasiveness of market fragmentation and high frequency trading they

document suggests that, rather than market fragmentation and high frequency trading being separate

phenomena, the interaction between them may play an important role in the markets.3

In this paper, I develop a model in which high frequency traders are market makers and the speed

of a market maker determines her ability to monitor orderflows at multiple trading venues. A high

frequency market maker can quickly update her quotes to reflect this information, thereby allowing

the market maker to avoid adverse selection by informed traders. The informed traders in the model

represent buy-side institutional traders, such as hedge funds or asset management firms, who earn

returns by exploiting time-sensitive private information. For instance, an institutional trader could

trade on his forecast of an imminent announcement, price movements in related securities, or activity

data from social networks.4 The model explains how high frequency market makers can increase the

trading costs of the institutional traders, while lowering the trading costs of retail traders. In addition,

the model generates testable implications about the spillovers that a trading venue imposes on others

when the speed of the venue’s market makers changes. These results depend crucially on the interaction

between market fragmentation and the speed of market making, rather than either in isolation.

Empirical evidence indicates that high frequency traders (HFTs) are net providers, not takers,

of liquidity (Hagströmer and Norden (2013); Bershova and Rakhlin (2013); Korajczyk and Murphy

(2015)).5 Many HFTs specialize in market making strategies, fulfilling roles similar to traditional

market makers (Hagströmer and Norden (2013); Menkveld (2013)). In addition, the HFTs now supply

liquidity for the majority of trades at several trading venues in Europe and North America (Chordia,

Goyal, Lehmann, and Saar (2013); Malinova and Park (2015); Riordan and Storkenmaier (2012)). This

rise in high frequency trading has coincided with substantial improvements to overall liquidity and

price discovery (Chordia, Roll, and Subrahmanyam (2011)), improvements which are likely caused by

the HFTs (Hendershott, Jones, and Menkveld (2011); Brogaard, Hendershott, and Riordan (2014);

Riordan and Storkenmaier (2012)). Despite the apparent benefits of HFTs to market quality, the HFTs

1Market fragmentation refers to the phenomenon in which the same asset is traded at multiple trading venues.
2e.g. comments submitted by NYSE, Southeastern Asset Management, Larry Tabb (CEO, TABB Group), and others.
3According to O’Hara (2015), “current market structure is thus highly competitive, highly fragmented, and very fast”

(O’Hara, 2015, p. 258).
4Willmer (2015) provides an example of a hedge fund that uses data from social networks.
5For an overview of today’s market structure and high frequency traders’ strategies, see O’Hara (2015).

2



may harm the returns to institutional traders (Malinova, Park, and Riordan (2013); Tong (2015)).6 My

model helps to explain this dichotomy.

Two assumptions are crucial for my results: (i) information is fragmented across multiple trading

venues; and (ii) faster traders process and act on the fragmented information more effectively than

slower traders. The second assumption is grounded in several stylized facts regarding high frequency

traders. First, the quotes of HFTs at a given trading venue reflect information at other trading venues

(and from related securities) faster than the quotes of slower traders (Hendershott and Riordan (2013)).

Price discovery in modern financial markets is consequently driven by the quotes of the HFTs, rather

than trades or the quotes of slower traders (Brogaard, Hendershott, and Riordan (2015)). Second,

HFTs monitor information more consistently than slower market participants (Chaboud, Chiquoine,

Hjalmarsson, and Vega (2014); Malinova and Park (2015)), and process hard (e.g. orderflow) informa-

tion more efficiently than human traders (Zhang (2012)). Third, HFTs quickly cancel their limit orders

in response to new information (Subrahmanyam and Zheng (2015)).

My model is in the tradition of Kyle (1985), and is closely related to Foster and Viswanathan

(1996).7 As in Foster and Viswanathan (1996), there are multiple informed traders, noise traders,

and competitive market makers who set prices. The informed traders represent institutional traders,

and receive heterogenous (but correlated) private signals about the asset value, which the institutional

traders use to extract information rents during trading.8 On the other hand, the noise traders represent

retail traders whose market orders reflect random beliefs and liquidity requirements.9 Unlike Foster

and Viswanathan (1996), there are multiple trading venues to represent market fragmentation. The

price at each trading venue is set competitively by a market maker such that the price is equal to the

market maker’s best estimate of the asset value given the orderflows she observes. Each market maker

precisely observes the orderflows at the trading venue where she is present, but she noisily observes

the orderflows at the other venues. Faster market makers observe cross-venue orderflows more precisely

than slower market makers.

The mechanics of my model may be interpreted as follows. Institutional traders possess an exogenous

source of short-lived and time-sensitive private information (e.g. movement in prices of related assets).

With the knowledge that private signals relevant to the asset value are forthcoming, the institutional

traders select the trading venues where they wish to trade based on the speeds of the venues’ market

makers. Since the value of private information is short-lived, an institutional trader immediately submits

6Brogaard et al. (2014) finds that high frequency traders have no statistically significant effect on the returns to
institutional traders.

7Specifically, the one-period case of Foster and Viswanathan (1996), which is solved in Pasquariello and Vega (2007).
8To emphasize that the informed traders (in Kyle (1985) sense of the term) represent institutions in my model, I will

refer to the informed traders as “institutional traders” in the remainder of the paper.
9Noise traders (in Kyle (1985) sense) are referred to as “retail traders”.
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market orders at his preferred venues upon receiving private information. To illustrate, consider a hedge

fund with analysts researching an asset. The fund first selects a trading venue at which to obtain direct

or sponsored access. Then, once the analysts provide a new prediction on the asset’s value, the fund

attempts to exploit the prediction at the selected venue before others trade away the opportunity. The

market makers observe orderflow from each trading venue and revise their quotes accordingly. Faster

market makers process and act on the orderflow information more quickly than slower market makers

so that the faster market makers’ quotes incorporate a greater proportion of the orderflow information

than the quotes of the slower market makers.

The interaction between market fragmentation and speed in my model helps to explain how high

frequency traders reduce trading costs for retail traders, even as institutional traders earn smaller

returns. Suppose market makers’ speeds increase at all trading venues due to, for instance, the spread

of colocation services (which are primarily purchased by market makers (Brogaard et al. (2015))) and,

insofar as HFTs tend to be liquidity providers, regulations that encourage automated trading (e.g. Reg

NMS in the US (Hendershott and Moulton (2011))). Then the precision with which market makers

at each trading venue observes other venues’ (“cross-venue”) orderflows increases, thereby improving

price discovery at every venue. Improved price discovery shrinks the information rents available to

institutional traders, whose returns decline. In addition, with more precise cross-venue information, the

market makers rely less on the orderflows at one’s own trading venue to set their prices. Thus, price

impact declines at each trading venue and liquidity improves overall.10

Suppose instead that market makers’ speed increased at particular trading venue (“shocked venue”)

and speeds elsewhere were unaffected. Examples include the entry of a high frequency market maker

(Menkveld (2013)) and technical upgrades to the venue’s trading system (Hendershott et al. (2011)).

In this case, the institutional traders face a tradeoff: continue trading at the shocked venue with faster

market makers; or trade at other venues and intensify competition among the institutional traders

at those venues. Either choice harms the institutional traders’ returns, and the institutional traders

substitute away from participating at the shocked venue just enough so that the reduction in their

returns is minimized. This causes spillovers on non-shocked venues as follows. First, fewer institutional

traders participate at the shocked venue which reduces the information content of the venue’s orderflows,

decreasing the cross-venue information available at the non-shocked venues. These venues’ liquidity and

price discovery then decline as the venues’ market makers rely more on their own venues’ orderflows to

set prices — thereby raising price impact and deceasing liquidity — while the total information available

at the venues decreases. Second, more institutional traders participate at the non-shocked venues, which

10Price impact is the amount by which the price moves against a trader once he submits his orders and is a measure of
trading cost (a form of illiquidity).
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intensifies competition among the institutional traders at those venues. Thus, the institutional traders

at the non-shocked venues trade more aggressively and market makers become less sensitive to the

venues’ orderflows in response. Overall, the second effect improves liquidity and price discovery. Where

trading venues are sufficiently fast, cross-venue information is important and the first effect dominates.

Otherwise, the second effect dominates so that the spillovers are negative where trading venues are

sufficiently fast, but are positive where the venues are slower.

The remainder of the paper is organized as follows. Section 1 provides an overview of the relevant

literature. Section 2 details the model, including the structure of the game in the model. Section 3 solves

the model for a linear and symmetric Perfect Bayesian equilibrium and discusses several equilibrium

properties. Section 4 presents the main results of the paper. Section 5 discusses the limitations, and

the market design and policy implications of the model, then concludes.

1 Related Literature

In this section, I summarize the theoretical literature on high frequency traders, and discuss how my

model compliments the existing models.

HFTs in Multiple Venues: Several models feature high frequency traders in settings with multiple

trading venues. In Foucault, Kozhan, and Tham (2014), the arrival of information at a trading venue

creates opportunity for HFTs to exploit stale quotes at other venues. Baldauf and Mollner (2015)

includes an analyst who endogenously acquires private signals then submits orders that are split across

multiple venues. Some of the analyst’s orders execute earlier than others, which allows the HFTs to trade

ahead of the analyst’s slower orders and, thereby, discourages information acquisition. Biais, Foucault,

and Moinas (2015) has HFTs that always match with liquid venues and have superior information about

the asset value. As the share of traders that are HFTs increases, adverse selection on market makers

rises and liquidity is reduced. These models treat HFTs as liquidity takers that impose adverse selection

costs on others. By contrast, fast traders in my model are market makers, not liquidity takers, whose

speed allows them to avoid adverse selection.

HFTs in a Single Venue: A large theoretical literature examines high frequency traders in settings

with a single trading venue. Many models from this literature assume that HFTs are liquidity takers

who: anticipates the trades of other participants (Foucault, Hombert, and Rosu (2015),Rosu (2014));

free-rides on information obtained by others (Yang and Zhu (2015)); or cause volatility as the HFTs

react simultaneously to a common signal (Budish, Cramton, and Shim (2013)11,Jarrow and Protter

11Budish et al. (2013) suggests batch auctions as a solution to the excess volatility caused by the HFTs. Trading in my
model is a batch auction, yet faster market makers have an informational advantage over slower market makers since the
faster market makers have more precise cross-venue information than the slower market makers.
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(2012)).

Conversely, Jovanovic and Menkveld (2011), Ait-Sahalia and Saglam (2014), Hoffmann (2014) and

Menkveld and Zoican (2014) contain fast traders who provide liquidity in a single venue setting. In

Jovanovic and Menkveld (2011) and Ait-Sahalia and Saglam (2014), fast traders are market makers, as

in this paper. The fast traders in Jovanovic and Menkveld (2011) facilitate trading between those who

arrives at the trading venue at different times while the fast trader in Ait-Sahalia and Saglam (2014)

post limit orders based on a private signal. Unlike Jovanovic and Menkveld (2011), whose results

pertain to welfare gains from trade, this paper focuses on the implications of fast market making for

market quality. Further, unlike Ait-Sahalia and Saglam (2014), the market makers in my model only

observe public information. Hoffmann (2014)’s fast traders can avoid adverse selection by cancelling

limit orders after asset value shocks and, thus, are more likely to provide liquidity. Menkveld and

Zoican (2014) contains fast traders whose type determines whether one is a market maker or a liquidity

taker; as the trading venue becomes saturated with fast traders, liquidity declines as market makers

become more likely to trade against fast traders. Hoffmann (2014) and Menkveld and Zoican (2014) are

not primarily concerned with the price discovery process and the asset values in the models are public

knowledge. No agent in my model knows the true asset value and the model’s price discovery process is

fully endogenous. Moreover, the presence of multiple trading venues in my model allows for some novel

analyses of spillovers between the venues.

2 Model

In this section, I specify a model based on Kyle (1985) and its extensions, most relevant being Foster

and Viswanathan (1996). Basic details of the model, including the asset, agents and their actions,

timing, and the information structure are described. Afterwards, I provide the necessary and sufficient

conditions for a linear and symmetric Bayesian Perfect equilibrium.

Overview: The model is a game played in two stages with one asset traded in multiple trading

venues. During the first stage (“entry stage”), the institutional traders, who trades on private infor-

mation, choose the trading venues to enter. At the start of the second stage (“trading stage”), the

institutional and retail traders at each venue simultaneously submit market orders to the venue’s mar-

ket maker. The market maker chooses a price based on the orderflows she observes, then clears the net

orderflow (the sum of all orders) sent to her trading venue at the chosen price.

The “speed” of a market maker in my model captures the differential abilities of high and low

frequency liquidity providers to integrate cross-venue information into prices. In particular, the market

maker at a given trading venue more precisely observes the net orderflows submitted at the other
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venues as her speed increases (i.e. becomes “faster”). The prices at the trading venues with very fast

market makers thereby closely reflect the orderflow information available across the trading venues,

whereas the prices at the venues with slower market makers reflect noisier cross-venue information. As

in Kyle (1985), each trading venue contains one competitive market maker who perfectly observes the

net orderflow at her own trading venue.12

The institutional traders trade on private information in search of returns, and their trades can

significantly affect market prices. Since my paper concerns trading in high frequency environments,

the private information received by the institutional traders are in the form of short-lived (one-period)

signals, and are therefore time-sensitive. I assume that the institutional traders’ signals are sufficiently

time-sensitive such that a signal is profitably exploited only when its recipient immediately trades on

the signal. Thus, the institutional traders must choose the trading venues in which to trade prior

to receiving their signals in order to extract information rents. Accordingly, the institutional traders

receive their signals at the end of the entry stage, before trading begins.13

Asset and Trading Venues: There is a single asset with value v, which is unknown to the agents

at the start of the game. Value v is distributed N (µ, σ2
v), and v becomes public knowledge after trading

ends.14 The distribution of v and the forms of all other distributions and the structure of the game are

public knowledge from the start of the game. Market fragmentation is captured in the model by the

presence of two venues, indexed by h ∈ {i, j}, wherein the asset is traded.

Traders, Market Makers and Timing: There are three kinds of market participants: N ≥ 2

profit-maximizing and risk-neutral institutional traders (ITs) indexed by k ∈ {1, ..., N}; retail traders

who trade randomly; and competitive and risk-neutral market makers. The game is partitioned into an

initial stage, called the entry stage, and the subsequent stage, called the trading stage. The institutional

traders are identical and have no private information in the entry stage. Only the ITs act in the entry

stage, where each IT either exits or chooses a venue to enter.15

The trading stage begins once every institutional trader enters a trading venue and the number of

12By allowing every market maker to perfectly observe their own venue orderflows ensures that my results are driven
by the ability of fast market makers to integrate cross-venue information rather than from being able to observe orderflow
information in general.

13Timing the arrival of the signals in this way provides two major benefits: first, each subgame in the trading stage
(corresponding to each possible realized distribution of the institutional traders among the trading venues) can be solved
independently of the institutional traders’ entry decisions in the entry stage, greatly simplifying the solution. Second,
the solutions to the subgames in the trading stage are now easily comparable to the equilibria of several existing Kyle
(1985)-type models. The number of institutional traders at each trading venue become public (as in Kyle (1985)) at the
beginning of the trading stage for the same reasons.

14One can interpret µ as the realized value of the asset from the previous period in a model when the two-stage game
of my model is repeated (Chowdhry and Nanda (1991)).

15There are two implicit assumptions being made about the institutional traders: (i) each IT can direct his market
orders to particular trading venues; and (ii) the ITs would not trade in every trading venue. Because the ITs represent
buy-side institutions, the first assumption is reasonable as many institutions would have direct or sponsored market access
to the venues where they trade (rather than trading through a broker as in Cimon (2015)). For the second assumption,
recall that many venues trade the same assets in modern markets. Therefore, at least for the most heavily traded assets,
a strategy that evaluates every venue trading a given asset for possible order submission is likely infeasible.
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Figure 1: Model Timing
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ITs at each venue becomes public knowledge. During the trading stage, the kth IT receives a private

signal, denoted by sk. Signals {sk}Nk=1 are drawn from a symmetric multivariate normal distribution

with mean zero, variance σ2
s , and covariance σss > 0.16 Following Foster and Viswanathan (1996), the

covariance between sk and v is chosen such that v = µ+
∑N
k=1 sk.17 After the ITs receive the signals,

the retail traders and the ITs at each trading venue simultaneously submit market orders to the venue’s

market maker. Each IT’s order reflects public knowledge and his signal while the retail traders receive

no private information and trades randomly.18

The market orders sent by traders at each venue are aggregated and become the venue’s net order-

flow, which is cleared by the venue’s market maker (MM). Every trading venue contains one MM who

has no private information. The MM at a venue sets the venue’s price competitively, after observing

her own venue’s net orderflow perfectly and the cross-venue net orderflow noisily. Competitive price

setting implies that the price at each venue is set equal to the expected value of v conditional on the

orderflow information observed by the venue’s MM. Finally, the net orderflows are cleared and v is

revealed. Figure 1 summarizes the timing in the game.

Institutional Traders’ Actions: Every institutional trader performs one or two actions in the game:

one action in the entry stage and up to one action in the trading stage. In the entry stage, each IT

may choose to enter either of the two trading venues or exits the game. Then the (pure strategy) entry

stage action set for the ITs is {venue i, venue j, exit}. The ITs may use mixed strategies in their entry

decisions, and the probabilities that the kth IT assigns to {venue i, venue j, exit} are denoted by the

vector
{
nik, n

j
k, 1− nik − n

j
k

}
. At the end of the entry stage, any IT that employed a pure strategy in his

entry decision (and did not exit) enters his chosen venue. If the IT employed a mixed strategy, he realizes

16Negative σss may be interpreted as, “each informed trader view[ing] that the other informed traders as collectively
pulling the [...] price in the wrong direction” (Foster and Viswanathan, 1996, p.1459). Limiting σss to non-negative values
reduces the number of cases I need to consider in this paper’s analyses. Moreover, it is unlikely that institutional traders
would view each other as collectively trading in the wrong direction.

17This implies that σ2
v = Nσ2

s + N(N − 1)σss and Cov(v, sk) = σ2
s + (N − 1)σss = σ2

v/N , and ensures that the total
information available among all the institutional traders is independent of N and the correlation between the signals
(Foster and Viswanathan, 1996, Sec. VI).

18Chowdhry and Nanda (1991), Bernhardt and Hughson (1997) and Mendelson and Tunca (2003) provide Kyle (1985)-
type models with endogenous liquidity traders in place of exogenous noise traders. I opted for the latter for tractability.
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one of {venue i, venue j, exit} according to a single draw from the probabilities
{
nik, n

j
k, 1− nik − n

j
k

}
.

The kth IT’s location after the entry stage is denoted by T (k) ∈ {∅, i, j}, where T (k) = i indicates

that the kth IT is at venue i and T (k) = ∅ indicates that the kth IT has exited the game.

Any kth institutional trader receives the private signal sk at the beginning of the trading stage, but

only those with T (k) 6= ∅ trades.19 Then the pair {T (k), sk} is the kth IT’s type in the trading stage.

After {T (k), sk}Nk=1 is realized, the kth IT whose T (k) 6= ∅ submits a market order, xk ∈ R, at trading

venue T (k) to maximize his expected profit given sk and the number of ITs at each trading venue.20

Retail Traders’ Actions: The retail traders are not assigned to any specific trading venue, receive

no information and trade randomly. The total orderflow submited by the retail traders at venue h is

denoted by uh
iid∼ N (0, σ2

u), and all traders submit their orders simultaneously.

Market Makers’ Actions and Speed: Each trading venue contains a competitive risk-neutral market

maker who clears the venue’s net orderflows at the price that she sets during the trading stage. Prior

to setting the price, venue h’s MM perfectly observes the net orderflow at venue h, but she observes the

net orderflow at the other trading venue with noise, ah. Define the set of institutional traders at trading

venue i (and symmetrically for venue j) as Ki = {k|T (k) = i}. Then the net orderflow submitted at

venue i is given as yi :=
∑
k∈Ki xk + ui, and the net orderflow at venue j observed by venue i’s MM

is zi := yj + ai. Therefore, for h ∈ {i, j}, the price at venue h, ph, is set by the venue’s MM after she

observes {yh, zh}. The speed of the MM at venue h, Sh > 0, reduces the magnitude of ah
i.i.d.∼ N(0, S−1h )

such that the MM at venue h observes the other venue’s net ordeflow more precisely as Sh increases.

Hence, where Sh →∞ the MM at venue h exactly observes both venues’ net orderflows, while Sh = 0

implies that the MM only observes yh. The speeds {Sh}h∈{i,j} are public knowledge.

Entry Stage Decisions: In the entry stage, each kth institutional trader chooses the probabilities

{nik, n
j
k, 1− nik − n

j
k} that he enters a trading venue or exits the game to maximize his expected profit.

Denoting the kth IT’s prior about nhl 6=k by nhk,l, the kth IT’s beliefs in the entry stage are summarized

by the (N − 1)-by-2 matrix Be,k := {nhk,l}l 6=k,h∈{i,j}. Since, at the end of the game, the kth IT at

venue h earns v−ph for each unit of asset he owns, the IT’s expected profit to entering venue h is given

by:

Πh,k := E[xk(v − ph)|Be,k, k ∈ Kh]. (1)

19For simplicity, institutional traders with T (k) = ∅ also receive signals.
20As in Kyle (1985), neither the ITs or the MMs face a liquidity constraint. Liquidity constraints, while an important

aspect of market participants, would distract from the analysis of market maker speed and market fragmentation.
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The kth IT, for some xk, thereby solves the following in the entry stage:

max
nik,n

j
k

nikΠi,k + njkΠj,k (2)

s.t. nik, n
j
k ∈ [0, 1] , nik + njk ≤ 1.

Institutional Traders’ Trading Decisions: In the trading stage, each institutional trader chooses

his order to maximize expected profits given his private signal and the number of ITs at each trading

venue. The number of ITs at venue h is denoted by Nh, and the order that the kth IT believes the lth

IT at the same venue (i.e. T (k) = T (l) = h) will submit is denoted xk,l. Then the trading stage beliefs

of the kth IT are summarized by the (N − 1)-element vector Bτ,k := {xk,l}l 6=k, and each IT at venue h

(i.e. ∀k ∈ Kh) solves the following in the trading stage:

max
xk

E[xk(v − ph)|Ni, Nj , sk,Bτ,k, k ∈ Kh] , h ∈ {i, j}. (3)

Market Makers’ Price Setting: The market makers competitively set prices such that the MM

at venue h earns zero expected profits given {yh, zh}. Then the MM at venue h sets ph such that the

following holds:

ph = E [v|yh, zh] , h ∈ {i, j}. (4)

Equilibrium Type: As in Foster and Viswanathan (1996), I search for a linear and symmetric

Bayesian Perfect equilibrium. Applied to the model, linearity implies that the price setting rule and

the kth institutional trader’s trading strategy are affine functions of {yh, zh}h∈{i,j} and sk, respectively.

Symmetry implies that, for any h and k 6= l, nhk = nhl = nh∗ in the entry stage, and xk = xl whenever

T (k) = T (l) and sk = sl in the trading stage. Hence, the equilibrium strategies at venue h in the

trading stage are of the form:

ph = δh + λy,hyh + λz,hzh (5)

xk = αh + βhsk (6)

∀k ∈ Kh and ∀h ∈ {i, j}.

The Bayesian Perfect equilibrium is solved backwards. The trading stage is solved for each possible

pair {Ni, Nj}. Then the entry stage is solved given the solution to the trading stage. In any equilibrium,

the beliefs {Be,k,Bτ,k}Nk=1 must be consistent with public knowledge, and with every player adhering
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to his or her equilibrium strategy.

Off-Equilibrium Beliefs: Suppose the institutional traders’ equilibrium strategies assign zero prob-

ability to exiting the game in the entry stage. Then any realization of {Ni, Nj} such that Nj 6= N −Ni

constitutes an off-equilibrium path. However, every player’s beliefs remain the same as in the equilib-

rium path since the ITs have no private information in the entry stage. If the ITs’ equilibrium entry

strategies assign nonzero probability to exiting the game, every possible realization of {Ni, Nj} is on

the equilibrium path. Similarly, every possible {yh, zh}h∈{i,j} is on the equilibrium path, and there is

no off-equilibrium path that can arise during trading.

3 Equilibrium

In this section, I define a linear and symmetric Bayesian Perfect equilibrium, and solve the model

for such equilibrium. First, a Bayesian Perfect equilibrium is defined, then the notion of equilibrium is

restricted to the linear and symmetric case. After an equilibrium is defined, I solve the model backwards,

beginning with the trading stage.21

Equilibrium Definition: A Bayesian Perfect equilibrium consists of entry strategies {nhk}h∈{i,j},

trading strategies {xk}k∈{1,...,N}, price setting rules {ph}h∈{i,j} and beliefs {Be,k,Bτ,k}k∈{1,...,N} such

that: the beliefs are consistent with public knowledge and equilibrium strategies; the optimal entry

condition (2) is satisfied for all institutional traders; and the price setting condition (4) and the optimal

trading condition (3) are satisfied for all possible realizations of {Ni, Nj} at all trading venues. Re-

stricting the Bayesian Perfect equilibrium to the linear and symmetric case requires that nhk = nh∗ for

all h and k, and that the trading stage strategies of each IT and market maker are in the form (5)-(6).

Definition 1 (Equilibrium). A linear and symmetric Bayesian Perfect equilibrium is a strategy profile

{nh∗, δh, αh, λy,h, λz,h, βh}h∈{i,j} and beliefs {Be,kBτ,k}k∈{1,...,N} consistent with the strategy profile such

that:

1. (Optimal Entry) For all k, l ∈ {1, ..., N}, k 6= l, {ni∗, nj∗} solves (2) given nik = nil = ni∗ and

njk = njl = nj∗;

2. (Optimal Trading) For all possible realization of {Ni, Nj}, for all h ∈ {i, j} and k ∈ Kh, xk =

αh + βhsk satisfies (3); and

3. (Price Setting) For all possible realization of {Ni, Nj} and h ∈ {i, j}, ph = δh + λy,hyh + λz,hzh

satisfies (4).

21All proofs are in the Appendix.
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Institutional Traders’ Participation: The institutional traders are initially assumed to exit the

game with zero probability in the entry stage. This is subsequently shown to be optimal as the ITs

expect to earn strictly positive profits in any equilibrium with full participation.

Trading Stage Solution: The method for solving the trading stage closely follows Kyle (1985) and

Pasquariello and Vega (2007). In the trading stage, the kth institutional trader at venue h solves (3)

given the beliefs Be,k consistent with the linearity conditions (5)-(6). Substituting (5)-(6) into (3) yields

a quadratic objective function, whose solution implies:22

βi =
1 + (N − 1)ρ−Njρλz,iβj

[2 + (Ni − 1)ρ]λy,i
(7)

αi =
µ− δi −Njλz,iαj

(Ni + 1)λy,i
(8)

λy,i > 0. (9)

Once the traders at venue h have submitted their orders, the venue’s market maker sets the price

according to the competitive price setting and linearity conditions, (4) and (5). These conditions imply

that the price is determined by the linear regression of the asset value, v, on the MM’s orderflow

information, {yh, zh}:

E[v|yh, zh] = ph = δh + λy,hyh + λz,hzh , h ∈ {i, j}. (10)

Because the unconditional expected values of yh and zh are zero, δh must equal µ, the unconditional

expected value of v. The terms λy,h and λz,h, which represent the MM’s sensitivity to her orderflow

information, are regression coefficients. Denote the vector of the MM’s orderflow sensitivities {λy,h, λz,h}

and {yh, zh} by λ and y, respectively. Then λ is obtained from the projection theorem:

λ = E [vy′] [E(yy′)]
−1
. (11)

The relations (7)-(9) and (11) are the necessary and sufficient conditions for a solution to any possible

realization of {Ni, Nj} in the trading stage.23

Entry Stage Solution: Assume that the kth institutional trader, at the beginning of the entry

stage, believes that each other IT will assign probability nh to entering venue h and will not exit the

game. Then the conditions for an equilibrium in the trading stage, (7)-(9) and (11), imply that the

kth IT’s expected profit to entering venue h, Πh,k, depends on nh as well as the venue’s speed, Sh.

22Derivations are symmetric for venue j.
23Except the case with Nh = 0, in which case βh is undefined. Where Nh = 0, I set βh equal to an arbitrary constant

to ensure the equilibrium is well defined even in cases with Nh = 0, h ∈ {i, j}.
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Denoting the correlation between the ITs’ signals by ρ := σss/σ
2
s :

Πh,k = E [xk(v − ph)|k ∈ Kh]

∝ E

[
1

[2 + (N − 1)ρ](2− ρ) + [2 + (Nh − 1)ρ] 1
Siσ2

u

∣∣∣∣∣ nh
]
. (12)

Relation (12) depends on nh only because the number of institutional traders who enters venue h, Nh,

is expected to rise as nh increases. Since Nh cannot be negative for any nh ∈ [0, 1] and Sh > 0, Πh,k is

strictly positive and the ITs never exit. Moreover, Πi,k < Πj,k whenever ni = 1, which implies that the

ITs’ equilibrium entry strategy is a mixed strategy. The optimal entry condition (2) is then reduced to

an equality constraint:

E
[
Πi,k −Πj,k|ni∗

]
= 0 , ∀k ∈ {1, ..., N} (13)

There always exists ni∗ in (0, 1) such that the equality constraint (13) is satisfied. Hence, (13) is the

necessary and sufficient condition for a solution to the entry stage.

Theorem 1 (Equilibrium). There exists a linear and symmetric Bayesian Perfect equilibrium. For any

h ∈ {i, j}, and for all possible realizations of {Ni, Nj} and k ∈ Ki, the equilibrium strategy in the entry

stage is given by nik = ni∗ = 1− nj∗, and the equilibrium strategies in the trading stage at venue h are

in the form (5)-(6). Define:

A(Si) :=
(1 + (N − 1)ρ)

(
2− ρ+ 1

Siσ2
u

)
(2 + (N − 1)ρ)(2− ρ) + (2 + (Ni − 1)ρ) 1

Siσ2
u

. (14)
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Then, if Ni, Nj > 0, the equilibrium is characterized by:

ni∗ = 1− nj∗ , ni∗ ∈ [0, 1] (15)

N−1∑
m=0

(
N−1
m

)
(ni∗)m(1− ni∗)N−1−m

√
m+ 1

[
(2 + (N − 1)ρ)(2− ρ) + (2 +mρ) 1

Siσ2
u

]
=

2− ρ+ 1
Sjσ2

u

2− ρ+ 1
Siσ2

u

N−1∑
q=0

(
N−1
q

)
(1− ni∗)q(ni∗)N−1−q

√
q + 1

[
(2 + (N − 1)ρ)(2− ρ) + (2 + qρ) 1

Sjσ2
u

] (16)

αi = 0 (17)

δi = µ (18)

βi =

√
σ2
u

Niσ2
s

(19)

λy,i = A(Si)

√
Niσ2

s

σ2
u

(20)

λz,i = A(Si)
2− ρ

2− ρ+ 1
Siσ2

u

√
Njσ2

s

σ2
u

. (21)

where the equilibrium trading strategies at venue j are symmetric. If Nh = 0 for some h ∈ {i, j},

the equilibrium is characterized by the same relations except βh is set equal to an arbitrary constant.

Further, nh∗ that solves (16) always exists and is unique in the domain (0, 1).

The equilibrium is in closed form excluding condition (16) whose numerical solution is easily ob-

tained. For any h ∈ {i, j}, the term βh determines the size of an institutional trader’s market order

given his signal and measures how aggressively the ITs’ trade on their signals. λy,h is the slope of the

price schedule offered by the market maker at venue h, and measures the sensitivity of ph to venue h’s

net orderflow, yh. Similarly, λz,h measures the sensitivity of ph to the net orderflow at the other trading

venue as observed by MM at venue h, zh.

To explain the economic meaning of A(Sh), consider the kth institutional trader who is assigned to

venue h in the trading stage. His price impact is given by λy,hxk = A(Sh)sk. Then A(Sh) determines

how intensely each IT at venue h impounds his signal into the price. Collectively, the ITs at venue h with

average signal s̄ := 1
Nh

∑
k∈Kh sk has total price impact equal to NhA(Sh)s̄h. If h = i, the relationship

between NhA(Sh) and the kth IT’s expected profit in the trading stage is given by:

E[Πi,k|Ni] = E[xk(v − pi)|Ni]

= βiE

[
sk

(
N∑
l=1

sl −NiA(Si)

[
s̄i +

2− ρ
2− ρ+ 1

Siσ2
u

s̄j

]) ∣∣∣∣∣Ni
]
. (22)
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Intuitively, higher NhA(Sh) implies that a larger proportion of the information held by venue h’s

institutional traders is revealed during trading, and the rents available for the ITs correspondingly fall.

The term NhA(Sh) is thereby a measure of competition between the ITs at venue h.

Relationship to Existing Models: The trading stage of the model is closely related to the one-

period case of Foster and Viswanathan (1996). The trading stage encompasses Foster and Viswanathan

(1996) as follows. Suppose venue h’s market maker is extremely slow (Sh → 0). Then the MM cannot

observe the orderflow at the other trading venue and the solution to the trading stage at venue h becomes

equivalent to the equilibrium of the one-period Foster and Viswanathan (1996).24 Now, instead consider

the case in which Sh > 0 and every institutional trader is assigned to venue h (Nh = N). In this case,

the solution to venue h’s trading stage returns the exact one-period Foster and Viswanathan (1996)

result.25 Therefore, the absence of either multiple trading venues (i.e. market fragmentation) or speed

reverts my model to an existing one, such that both elements of the model are necessary to generate

the results in the paper.

Equilibrium Properties: A series of propositions describe the properties of Theorem 1 that are

important to the mechanisms underlying my results. The first proposition is vital to generating spillovers

from venue i to venue j as Si changes:

Proposition 1 (Entry Substitution). ni∗ is strictly decreasing in Si and strictly increasing in Sj,

i 6= j.

Proposition 1 states that fewer institutional traders enter a trading venue when its speed increases,

while more ITs enter the venue as the other venue’s speed increases. The intuition is as follows:

suppose Si rises but the entry probabilities remain unchanged. Then the expected number of ITs

entering venue i is unaffected, and the ITs are expected to compete at venue i as intensely as before.

Consequently, the informativeness of yi is unchanged in expectation, although the increase in Si improves

the informativeness of zi. Venue i’s market maker then receives strictly superior information than

she would prior to the increase in Si, and her prices become more informative. This implies smaller

information rents for the ITs at venue i, and they compensate by substituting away from entering

venue i.

This intuition can be shown mathematically. Let I(yi) denote the proportion of the variance in

venue i’s net orderflow, yi, attributable to the institutional traders’ orders, I(yi) :=
V ar

(∑
k∈Ki

xk

)
V ar(yi)

.

Since the only orders in yi that are informative to the market makers are those sent by the ITs,

24Specifically, λz,h = 0 while λy,h becomes equal to λ in Pasquariello and Vega (2007) scaled by a constant that depends
on N and Nh.

25When Nh = N and the institutional traders’ signals are perfectly correlated (ρ = 1, which implies every IT knows
v), the solution to the trading stage at venue h becomes identical to the equilibrium in Foster and Viswanathan (1993).
The solution to venue h’s trading stage recovers the original Kyle (1985) equilibrium if, in addition, there is a single IT
(N = Nh = 1).
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I(yi) measures the informativeness of yi. Analogously, I(zi) is the informativeness of the orderflow

information at venue j observable by venue i’s MM, zi. It is simple to show that:

I(yi) =
1 + (Ni − 1)ρ

2 + (Ni − 1)ρ
(23)

I(zi) =
1 + (N −Ni − 1)ρ

2 + (N −Ni − 1)ρ+ 1
Siσ2

u

. (24)

If Si increases and ni∗ remains constant, the distributions of Ni and Nj = N −Ni do not change and

E[I(yi)] is unaffected while E[I(zi)] increases. Thus, venue i’s institutional traders choose a smaller ni∗

to reduce the impact of the increase in Si on the informativeness of their orderflow.

The informativeness of venue i’s orderflow, I(yi), is independent of Si since the venue’s market maker

always observes yi perfectly. On the other hand, I(zi) is strictly increasing in Si as the MM observes

the other venue’s orderflow more precisely. When Ni increases, competition among the institutional

traders at venue i intensifies and I(yi) improves. Because a larger Ni means smaller Nj , I(zi) declines

as Ni increases.

Proposition 2 (Entry and Orderflow Information). For any h ∈ {i, j} and given ρ > 0:

• I(yh) is independent of Sh and strictly increasing in Nh; and

• I(zh) is strictly increasing in Sh and strictly decreasing in Nh.

The relations (23)-(24) demonstrate the intuition to another important property of the equilibrium:

if the trading venues have the same speed (i.e. Si = Sj), the total information at venue i, I(yi) + I(zi),

is greater than I(yj) + I(zj) whenever Ni > Nj . Hence, the institutional traders will be indifferent

between the venues only if the ITs assign equal probability to entering either venue (ni∗ = 1
2 ) so that

the distributions of Ni and Nj = N −Ni are identical.

Proposition 3 (Equal Entry). Given Si = Sj and ρ > 0:

• I(yi) + I(zi) > I(yj) + I(zj) if and only if Ni > Nj; and

• ni∗ = nj∗ = 1
2 .

One mechanism causing competition among the institutional traders is from Foster and Viswanathan

(1996): positive correlation between the ITs’ signals (ρ > 0) means that a part of the value in the kth

IT’s signal is shared with the other ITs. Therefore, trading by the other ITs reduces the profit the

kth IT can earn on his signal, sk, which leads him to trade more intensely as Ni increases. Note that

NiA(Si) is increasing in ρ ≥ 0, which implies that I(yi) and I(zi) are increasing in ρ as more private

information is impounded into the price.
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Proposition 4 (Competition and Signal Correlation). For any h ∈ {i, j}, given ρ ≥ 0 and Nh < N ,

the terms NhA(Sh), I(yh) and I(zh) are strictly increasing in ρ.

Because the speed of venue i affects I(zi) and NiA(Si), interactions between Si and ρ exist. When

ρ is higher, there is greater overlap between the ITs’ signals and NiA(Si) is greater. As venue i’s speed

increases, the effect of ρ on NiA(Si) is amplified as faster market makers more precisely observe their

cross-venue orderflows. Then competition between the ITs at venue i intensifies further and reduces

information rents available to the venue’s ITs; thereby reduing the ITs’ total profit. Hence, the ITs’

substitute away from the venue with increased speed by a larger magnitude where ρ is higher.

Numeric Result 1 (Signal Correlation and Speed). For any h ∈ {i, j} and given ρ ≥ 0, nh∗

decreases more steeply as Sh increases when ρ is larger.

Figure 2: Signal Correlation and Speed

Numeric solutions to ni∗ − nj∗ over ρ as determined by (16) and for cases {Si, Sj} ∈ {{0.5, 1}, {1, 2}, {1, 4}}. Venue i is
the slower venue in each case and N , σ2

s and σ2
u are set to 15, 1 and 1, respectively.

Figure 2 demonstrates numeric result 1. The figure shows that the entry probabilities to entering

either venue are the same (ni∗ = 1
2 ) when there is zero correlation (ρ = 0) between the institu-

tional traders’ signals. Without correlation, each IT is a monopolist over his own signal, and the ITs

do not compete over information. Consequently, the NiA(Si) and the informativeness of orderflows

({I(yi), I(zi)}) no longer depend on the number of ITs (N) or their venue assignments (Ni):

A(Si|ρ = 0) = I(yi|ρ = 0) =
1

2

I(zi|ρ = 0) =
1

2 + 1
Siσ2

u

.
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Despite I(zi) remaining dependent on Si, the institutional traders’ entry probabilities are unimpacted

by Si because zi is orthogonal to yi as ρ = 0. Thus, the speeds at the trading venues cannot influence

the ITs’ entry probabilities (ni∗) when ρ = 0. This leaves the retail traders’ orderflows (ui) as the sole

determinant of ni∗.

As in Foster and Viswanathan (1996), the orderflow sent by the retail traders disguises the insti-

tutional traders’ orders so that the market makers cannot invert orderflows to obtain the aggregate

signal. Where Nh is large, there is less retail trading with which each IT at venue h could disguise his

orders and the IT thereby trade less aggressively (smaller βh). Conversely, βh =
√

σ2
u

Nhσ2
s

is increasing

as the expected magnitude of uh per IT, given by E[|uh|]
Nh

=
√

2
π
σu
Nh

, increases, which occurs whenever

σ2
u

Nh
increases. Returning to nh∗, when ρ = 0, E

[
σ2
u

Nh

]
solely determines the ITs’ expected profits such

that an equilibrium is attained only if ni∗ = nj∗ = 1
2 :

Proposition 5 (Entry and Uncorrelated Signals). If ρ = 0, then ni∗ = nj∗ = 1
2 .

Entry Stage Tradeoffs: In summary, the institutional traders’ face trade offs along three dimen-

sions in the entry stage:

(i) Speeds at the trading venues, Si and Sj ;

(ii) Correlation between the ITs’ signals, ρ; and

(iii) Magnitude of retail trading as determined by σ2
u.

Across dimension (i), the institutional traders are more likely to enter the slower venue (proposition 1).

Across dimension (ii), ni∗ becomes more sensitive to the difference between Si and Sj as ρ increases

(proposition 1). Lastly, across dimension (iii), E
[
σ2
u

Nh

]
is decreasing in nh∗ so that nh∗ is close to 1

2

whenever ρ is low.

Trading Stage Properties: Liquidity at venue h is determined by the sensitivity of the venue’s

market maker to the venue’s net orderflow, λy,h. As Sh increases, the MM’s cross-venue orderflow

becomes more informative (i.e. I(zi) increases) and the MM relies less on yh to determine her price.

Thus, λy,h declines while λz,h increases. The liquidity at venue h therefore is increasing in Sh.

Proposition 6 (Price Sensitivity). For any h ∈ {i, j} and given ρ > 0, λz,h is increasing in Sh and

λy,h is decreasing in Sh.

Further, the trading stage solution at a given venue, characterized by (14) and (17)-(21), is unaffected

by the other venue’s speed conditional on {Ni, Nj}:

Proposition 7 (Speed Irrelevance). Given {Ni, Nj}, the solution to the trading stage at venue i

(venue j) is independent of Sj (Si).
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Proposition 7 implies that the effect of speed is loaded on the entry stage. For the intuition, recall

that each market maker observes the net orderflow at her trading venue perfectly while the MM’s speed

allows her to observe cross-venue orderflows noisily. As a result, any information the MM at venue j

obtains due to Sj is already available at venue i with greater precision. Consider I(yi) and I(zj): it is

straightforward to show that I(yi) ≥ I(zj). Therefore, zj is superfluous for venue i’s MM and, because

venue i’s ITs care only about pi, Sj does not affect the venue i’s trading strategies given {Ni, Nj}.

4 Comparative Statics

In this section, I examine two counterfactuals: (i) an increase in speed at all trading venues (“aggregate

shock”); and (ii) an increase to speed at a given venue (“local shock”). The aggregate shock may be

interpreted as a regulatory or technological change that improves the ability of all market makers to

incorporate cross-venue information into their quotes. The spread of colocation services is an example:

majority of colocation services are purchased by market makers and, by shortening the physical distance

to trading venues’ servers, increase the speeds of the market makers (Brogaard et al. (2015)). A

regulatory example is the establishment of the Regulation National Market System (Ref NMS) in the

US. Reg NMS encouraged trading venues to automate, thereby increasing high frequecy traders’ access

to those venues (Hendershott and Moulton (2011)).

The local shock may represent, for example, latency update to the trading venue’s server or a

reduction in trading message fees.26 Other relevant examples are speed bumps27 which trading venues

may impose on all or specific types of orders. TSX Alpha and Aequitas NEO are trading venues that

impose speed bumps against market orders (TSXA (2015); Schmitt (2015)), thereby lengthening the

time market makers have to incorporate cross-venue information into their quotes. IEX is a venue

that places speed bumps on all orders with the aim of reducing participation by high frequency traders

(Picardo (2014)). The introduction of IEX-type speed bump would then correspond to a decrease in

speed as HFTs tend to act as market makers (Hagströmer and Norden (2013); Malinova and Park

(2015)).

The remainder of the section analyses liquidity, price discovery and the institutional traders’ profits

for each counterfactual. The ITs’ profits provide insight into the allocative aspects of high frequency

market making; specifically, there is an ongoing debate regarding the impact of high frequency trading

on buy-side institutions and retail investors.28 I begin the section by defining market quality measures.

26Conrad, Wahal, and Xiang (2015), Hagströmer and Norden (2013) and Malinova, Park, and Riordan (2013) argues
that algorithmic market making is disproportionately affected by message-based fees.

27Processing delay on orders.
28For instance, see the comments submitted to the US Securities and Exchange Commission regarding the application

by IEX to become an exchange (SEC (2015)).
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Then I examine the aggregate shock, followed by the local shock’s effect on the shocked venue. The

section ends with the analysis of the local shock’s effect on the non-shocked venue (“spillovers”).

Market Quality Measures: Each measure is an unconditional expectation computed at the begin-

ning of the game (i.e. t = 0). Liquidity at venue h, as in Kyle (1985), is measured by the inverse of the

sensitivity of the venue’s price to the venue’s net orderflow, Lh := E[λ−1y,h]. When ph is sensitive to yi,

price impact is greater such that E[λ−1y,h] is the inverse of trading costs at venue h.

The price discovery measure should reflect the information content of the prices. One such measure

is the proportion of variation in the true asset value explained by the price. If ph explains most of the

variation in v, price discovery at venue h is high as one can generate an accurate estimate of v using

only ph. Denote the price discovery measure for venue h by PDh:

PDh := 1− E
[
V ar(v|ph)

σ2
v

]
.

Applying the law of total variance29 gives E[V ar(v|ph)] = σ2
v − E[V ar(ph)] and:30

PDh =
E[V ar(ph)]

σ2
v

. (25)

To analyse allocative impact, I measure the institutional traders’ total expected profit at each venue.

Calculating the ITs’ individual expected profit from the total measure is trivial and the total measure

has the advantage that, due to competitive price setting, it is equal to the retail traders’ total expected

losses. Theorem 1 and (22) together imply:

PRFTh := E[Πi,k] = E[A(Sh)
√
Nh]σuσs. (26)

Table 1 summarizes the market quality measures.

Table 1: Market Quality Measures

Measure Definition

Liquidity Lh := E[λ−1y,h]

Price Discovery PDh := E[V ar(ph)]
σ2
v

IT Profit PRFTh:= E[A(Sh)
√
Nh]σuσs

29Law of total variance and the relation (5) implies V ar(v) = E[V ar(v|p)] + V ar(E[v|p]) = E[V ar(v|p)] + V ar(p).

30PDh =
[1+(N−1)ρ]

[
D(2−ρ)2+C(2−ρ) 1

Shσ
2
u
+
Nh
N
B

(
1

Shσ
2
u

)2]
[
D(2−ρ)+B 1

Shσ
2
u

]2 , where D := 2 + (N − 1)ρ, B := 2 + (Nh − 1)ρ and

C := Nh
N
D + 1

N
[2 + (Nh(N −Nh)− 1)ρ].
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4.1 Aggregate Shock

This subsection presents the market quality effects of increasing speeds at all trading venues (i.e. the

aggregate shock). The analytical result relies on imposing an equality constraint on the venues’ speeds

which, by proposition 3, fixes the institutional traders’ entry probabilities to ni∗ = nj∗ = 1
2 . Then the

distributions of {Ni, Nj} are independent of the venues’ speeds and the aggregate shock’s impact on

each market quality measure has the same sign whether the measure are unconditioned or conditioned

on {Ni, Nj}. I exploit this to prove proposition 8.

Proposition 8 (Aggregate Shock and Market Quality). Suppose Si = Sj = S > 0 and Ni, Nj > 0.

Then:

• Li and Lj are increasing in S;

• PDi and PDj are increasing in S; and

• PRFTi and PRFTj are decreasing in S.

The aggregate shock improves liquidity and price discovery but decreases the institutional traders’

total expected profit at every trading venue. The intuition is as follows: by proposition 2, the increase

in Sh, given Nh, does not impact the informativeness of venue h’s net orderflow (I(yh)) whereas the

informativeness of its cross-venue information (I(zh)) increases, implying that orderflows observed by

the market makers are strictly more informative. Moreover, by proposition 6, greater I(zh) causes

the MM at venue h to rely more on zh in price setting, which reduces her sensitivity to yh (i.e. λy,i

decreases). The former effect leads to increased price discovery while the latter effect improves liquidity

as the venues’ speeds increase, and indicate reduced information rents and trading costs, respectively.

The ITs thereby earn smaller profits even as retail traders benefit from lower trading costs.

Empirical Evidence: Findings from large, multi-venue data are consistent with proposition 8.

Conrad, Wahal, and Xiang (2015) and Boehmer, Fong, and Wu (2014) find that high frequency trading

improves liquidity and price discovery in equities markets. Malinova, Park, and Riordan (2013) and

Tong (2015) observe that HFT activity and institutional traders’ returns are negatively related.

Numerical Results: Proposition 8 imposes an equality constraint the speeds of the trading venues.

For the numerical results, the equality constraint is relaxed to test whether the findings in proposi-

tion 8 hold in cases where the venues’ have unequal speeds. The numerical methodology is specified in

procedure 1.31

31In procedure 1, the liquidity measure for venue h is undefined whenever realized Nh = 0. Accordingly, I set Nirq = 1
(and Njrq = N − 1) whenever Nirq = 0 is drawn.
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Procedure 1: Aggregate Shock Numerical Methodology

1. Choose vectors of parameters {N,µ, σ2
s , ρ, σ

2
u}, initial speeds {Si,initial, Sj,initial} and aggregate

shocks {ωr}Rr=1;

2. For each r ∈ {1, ..., R}, set {Si, Sj} = {Si,initial +ωr, Sj,initial +ωr} and use (16) to compute ni∗,
then stored the output as ni∗r ;

3. For each r ∈ {1, ..., R} and each q ∈ {1, ..., Q}, take N draws from the binomial distribution with
probability ni∗r , then store the sum of the output as Nirq and set Njrq = N −Nirq;

4. For each {Nirq, Njrq}r∈{1,...,R}
h∈{1,...,H}

, compute {PDhrq, Lhrq, PRFThrq}h∈{i,j}; and

5. For each r ∈ {1, ..., R} and h ∈ {i, j}, compute PDhr := 1
q

∑Q
q=1 PDhrq, Lhr := 1

q

∑Q
q=1 Lhrq and

PRFThr := 1
q

∑Q
q=1 PRFThrq.

Parameter values are {N,µ, σ2
s , ρ, σ

2
u} = {15, 0, 1, 0.5, 1}.32 Initial speeds are {Si,initial, Sj,initial} ∈

{{0.5, 1}, {1, 2}, {1, 4}} as in figure 2 where venue i is always the slower venue. Aggregate shocks,

{ωr}r∈{1,...,R}, range from 0 to 5 in increments of 0.1 so that R = 51, and Q = 20, 000. For notational

convenience, PDir, Lir and PRFT ir are written as PDi, Li and PRFTi, respectively.

Figure 3 shows that liquidity and price discovery are monotonically increasing, and the institutional

traders’ total expected profit is monotonically decreasing at the slower venue (venue i) as the speeds of

all trading venues increase. The same holds for the faster venue (venue j) except in the case where the

initial difference in speed is very large. The figure suggests that proposition 8 is robust to relaxing the

equality constraint on the venues’ speeds.

4.2 Direct Effect of the Local Shock

This subsection presents the effect of increasing the speed at a particular venue (i.e. the local shock)

on that venue’s market quality (“direct effects” of the local shock). The intuition underlying the direct

effects of the local shock is close to the intuition behind the effects of the aggregate shock, except that

the institutional traders substitute away from the shocked venue (proposition 1). To analyse the direct

effect, a numerical methodology similar to procedure 1 is used. Corresponding results, with venue i as

the shocked venue, are provided in figure 4.

Figure 4 shows that the local shock’s direct effects are qualitatively identical to the aggregate shock’s

effect as per proposition 8; liquidity and price discovery improve while the institutional traders’ total

expected profit decreases. The results suggest that impact of the change in {Ni, Nj} due to the local

32Parameters imply that σ2
v = 120. For all numerical analyses, parameterizations using every combination of N =

{5, 15, 30}, σ2
s = {.5, 1, 5}, ρ = {.01, .5, .99} and σ2

u = {.5, 1, 5} were also used and found to generate similar results.
Figures using alternative parameterizations are available upon request.
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Figure 3: Effects of Aggregate Shock with Unequal Speeds

(a) Liquidity (Venue i) (b) Liquidity (Venue j)

(c) Price Discovery (Venue i) (d) Price Discovery (Venue j)

(e) ITs’ Total Profit (Venue i) (f) ITs’ Total Profit (Venue j)

Market quality measures as cumulative percent change computed where the value at ∆Si = 0 as the base. Parameter
values are

{
N,µ, σ2

s , ρ, σ
2
u

}
= {15, 0, 1, 0.5, 1} and the initial speeds are {Si,initial, Sj,initial} ∈ {{0.5, 1}, {1, 2}, {1, 4}}.

The vertical axes are in percentages, venue i is the slower market across all specifications and the results are averaged
across Q = 20, 000 draws.
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Figure 4: Direct Effects of the Local Shock

(a) Liquidity

(b) Price Discovery

(c) ITs’ Total Profit

Market quality measures as cumulative percent change computed where the value at ∆Si = 0 as the base. Parameter
values are

{
N,µ, σ2

s , ρ, σ
2
u

}
= {15, 0, 1, 0.5, 1}, the initial speed at the shocked venue (venue i) is Si,initial = 0.5 while

venue j’s speeds are set equal to Sj ∈ {0.01, 1, 10}. The vertical axes are in percentages and results are averaged across
Q = 20, 000 draws.
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Figure 5: Individual Institutional Trader Profit

Expected profits for each institutional trader at each venue and N1.33Individual IT profit is computed by PRFTi/Ni.
Local shocks only affect the speed of venue 1, and the initial speed at venue 1 equals 0.25. The speed at venue 2 is set to
1. Parameter values are

{
N,µ, σ2

s , ρ, σ
2
u

}
= {15, 0, 1, 0.5, 1}. H = 20, 000 draws are made for each numerically computed

ni∗. Values in the graphs are averages across the H draws.

shock are second order in the direct effects. Intuitively, this is due to the trade off faced by the ITs as

Si increases: given ni∗, the ITs’ expected profits shrink when Si increases; yet, if the ITs respond by

reducing ni∗ and raising nj∗, the competition between ITs at venue j is expected to intensify and the

ITs’ expected profits still decrease. The ITs therefore do not substitute away from venue i sufficiently to

reduce the venue’s liquidity or price discovery on net as Si increases. Figure 5 illustrates this dynamic.

Empirical Evidence: My results are consistent with the large literature on high frequency traders

which suggests that HFTs improve liquidity and price discovery. Papers in this literature exploit

technical upgrades at trading venues (Hendershott et al. (2011); Riordan and Storkenmaier (2012);

Hendershott and Riordan (2013)), introduction of colocation (Brogaard et al. (2015); Boehmer et al.

(2014)), datasets that identify HFTs’ transactions (Carrion (2013); Brogaard et al. (2014); Hasbrouck

and Saar (2013)), and other strategies34 to establish that HFT activity improves liquidity and price

discovery. The allocative aspect of the results are consistent with Malinova et al. (2013) and Tong

(2015) which finds that HFTs decrease institutional traders’ returns.35

33Notice that the Expected profits for individual institutional traders are equal across the trading venues.
34E.g. Menkveld (2013) examines the entry of a high frequency market maker into an European venue.
35In contrast, Brogaard et al. (2014) detects no statistically insignificant effect from HFTs on the institutional traders’

returns.
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Figure 6: Equilibrium Entry Probability into Venue 2

Probability that an institutional trader enters venue j (i.e. nj∗) as the speed at venue i changes. Initial speeds are
Si,initial = Sj,initial = 1 and parameter values are

{
N,µ, σ2

s , ρ, σ
2
u

}
= {15, 0, 1, 0.5, 1}.

4.3 Spillovers from the Local Shock

This subsection presents the effects of increasing the speed at a given venue on the venue whose speed

has not changed (“spillovers” from the local shock). By proposition 7, the local shock on venue i does

not affect venue j if {Ni, Nj} are held constant. The spillovers from the local shock must therefore be

entirely driven by the change in the distributions of {Ni, Nj} as institutional traders substitute away

from venue i. Figure 6 shows the rise in nj∗ as Si increases.

As more institutional traders enter venue j, two opposing effects occur: (i) competition between

the ITs intensifies at venue j and the venue’s ITs trade more aggressively (“entry effect”); and (ii) ITs’

competition at venue i declines and venue j’s cross-venue information (i.e. zj) becomes less informative.

The first effect reduces the market maker’s sensitivity to yj at venue j (i.e. λy,j decreases) since yj

becomes more sensitive to the signals held by the venue’s ITs. Thus, both liquidity and price discovery

improve, and the ITs’ total profit decreases, at venue j. The second effect reduces the information

available to venue j’s MM and worsens the venue’s price discovery and increases its ITs’ total profit.

Furthermore, the MM increases her reliance on yj as the informativeness of zj deteriorates, raising λy,j

and decreasing venue j’s liquidity. Because cross-venue information is more useful to the venues with

faster MMs, the second effect is dominates at sufficiently fast venues whereas the first effect dominates

at slower venues. Proposition 9 captures this intuition:
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Proposition 9 (Spillovers from the Local Shock). Define:

S∗j :=
(Nj + 1)ρ− 2

[2 + (N − 1)ρ](2− ρ)σ2
u

. (27)

Then E[Lj |Nj ] is strictly decreasing in Si and E[PRFTj |Nj ] is strictly increasing in Si whenever Sj >

S∗j , and E[Lj |Nj ] is strictly increasing in Si and E[PRFTj |Nj ] is strictly decreasing in Si whenever

Sj < S∗j .

Proposition 9 states that, conditional on Nj , the spillovers from the local shock reduces liquidity

and increases ITs’ total profit at venue j whenever the venue is sufficiently fast, but otherwise improves

the venue’s liquidity and decreases ITs’ total profit. However, the distribution of Nj shifts right as Si

increases. Numerical results in figure 7 show that the intuition behind proposition 9 holds nonetheless.

Empirical Implications and Evidence: The spillovers from changes to the speed at a trading venue

on other venues provide some novel empirical implications. Specifically, when a given trading venue’s

speed increases, other fast (slow) venues will experience:

• More (more) institutional (i.e. informed) trading;

• Less (more) price discovery;

• Less (more) liquidity;

• Higher (lower) institutional traders’ total returns; and

• Lower (higher) retail traders’ total returns.

Empirical Evidence: Chen, Sean, Michael, and Thomas (2016) examines spillovers between trading

venues and finds results consistent with the model’s empirical implications. Chen et al. (2016) analyses

the 2015 introduction of a speed bump on marketable orders at TSX Alpha, a Canadian exchange, and

concludes that: (i) informed orderflows decreased at TSX Alpha but increased at other Canadian venues;

and (ii) liquidity at the other venues declined. TSX Alpha’s speed bump would improve the ability

of its market makers to revise stale quotes in response to cross-venue information since only liquidity

taking orders are affected; therefore, in the language of my model, the speed bump is equivalent to an

increase in the speed at TSX Alpha. Then conclusion (i) in Chen et al. (2016) is consistent with my

results. Moreover, Malinova and Park (2015) shows that high frequency traders provide the majority

of liquidity at Canadian exchanges, which suggests that market makers at Canadian trading venues are

very fast. Conclusion (ii) in Chen et al. (2016) may thereby be consistent with my results.
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Figure 7: Spillovers from the Local Shock

(a) Liquidity

(b) Price Discovery

(c) ITs’ Total Profit

Market quality measures at venue j as cumulative percent change computed where the value at ∆Si = 0 as the base.
Parameter values are

{
N,µ, σ2

s , ρ, σ
2
u

}
= {15, 0, 1, 0.5, 1}, the initial speed at the shocked venue (venue i) is

Si,initial = 0.5 while venue j’s speeds are set equal to Sj ∈ {0.01, 1, 10}. The vertical axes are in percentages and results
are averaged across Q = 20, 000 draws.
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5 Conclusions

I conclude with a discussion of my model’s limitations as well as a its potential implications for market

design and regulatory policy.

Limitations: The model captures a few aspects of the interaction between market fragmentation

and high frequency trading that arise due to high frequency market makers. Thus, this paper com-

plements existing research on high frequency traders that employ liquidity taking strategies, including

latency arbitrage (e.g. Foucault et al. (2014) and Budish et al. (2013)). The model only considers

short-lived and time-sensitive private information and does not explicitly feature arbitrage. This paper

should then be viewed as developing a theory of how prices evolve at high frequencies wherein arbi-

trage opportunities are common (Chaboud et al. (2014)). In addition, retail traders and information

acquisition are exogenous in the model. Endogenous liquidity trading as in Chowdhry and Nanda

(1991), Bernhardt and Hughson (1997) or Mendelson and Tunca (2003), and endogenous information

acquisition as in Baldauf and Mollner (2014) would allow richer analyses of volume and the welfare

implications. For instance, if information acquisition is costly for institutional traders, the reductions

in their expected profits would also reduce information gathering and may harm price discovery.

Market Design Implications: The model explains how high frequency traders may integrate infor-

mation in otherwise fragmented markets. As HFTs do so, they avoid adverse selection by institutional

traders, reduce trading costs and generate spillovers between trading venues. Some resulting comments

on market design:

Speed Bumps: TSX Alpha and Aequitas Neo exchanges apply a processing delay against liquidity

taking orders (TSXA (2015); Alpha (2014)). A delay on liquidity takers improves the ability

of market makers to incorporate cross-venue information and is therefore expected to improve

market quality while decreasing returns to institutional traders. Speed bumps on all orders, such

as those by IEX (Picardo (2014)), may harm market quality and increase returns to institutional

traders if HFTs are chiefly engaged in market making and order delay affects HFTs more severely

than slower traders.

Fees: Fees on cancellations or messages would reduce market makers’ ability update quotes on cross-

venue information (Malinova et al. (2013)), and thereby decrease market quality and increase the

returns to institutional traders.

Colocation: Brogaard et al. (2015) finds that most colocation services are allocated to market makers.

Then, colocation services would improve market quality and reduce the returns to institutional

traders.
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Regulatory Implications: The model predicts that increasing the speed of market makers at a

given trading venue negatively affects other venues’ market quality if those venues’ market makers are

already very fast. Since high frequency traders are pervasive (O’Hara (2015)) and HFTs tend to provide

liquidity (Brogaard et al. (2015, 2014); Malinova and Park (2015); Hagströmer and Norden (2013), the

model implies that technical upgrades or other changes that increase the speed of market makers at a

given venue may reduce liquidity and price discovery at other venues.
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Appendix

Proof of Theorem 1: The first part of this proof closely follows Kyle (1985) and Pasquariello and Vega

(2007). Steps of the proof are as follows: (i) solve the trading stage conditional on {Ni, Nj}; then (ii)

solve the entry stage given the solution to the trading stage.

Solution to the Trading Stage: In the trading stage, an equilibrium solution is found if and only

if the institutional traders are maximizing expected profits given their information set and the price in

each trading venue is equal to the expected value of v given the information set of the venue’s market

maker. The kth IT (k ∈ {1, ..., N}) assigned to venue h (h ∈ {i, j}) has an information set that includes

{Ni, Nj} and sk such that he solves:

max
xk

E[xk(v − ph)|Ni, Nj , sk, k ∈ Kh].

In a linear equilibrium, the kth IT believes that the other ITs strategies and the price setting rules will

be in the form (5)-(6) so that where k ∈ Ki (k ∈ Kj case is symmetric):

max
xk

E[xk(v − pi)] = max
xk

xkE

[
µ+

N∑
l=1

sl − δi − λy,i

(Ni − 1)αi + βi
∑

l∈Ki\k

sl + xk + ui


− λz,i

Njαj + βj
∑
l∈Kj

sl + ai + uj

]

= max
xk

[µ+ (1 + (N − 1)ρ) sk − δi + λy,i(Ni − 1)αi + λz,iNjαj ]xk

− λy,i
[
βi(Ni − 1)ρskxk + x2k

]
− λz,iβjNjρskxk

whose first order condition is satisfied if and only if:

2λy,ixk = µ− δi + [1 + (N − 1)ρ− λy,iβi(Ni − 1)ρ− λz,iβjNjρ] sk

and the second order condition for a maximum is satisfied if and only if λy,i > 0. Then, the kth IT

follows a linear strategy in the form (6) (i.e. xk = αi + βisk) if and only if:

αi =
µ− δi −Njλz,iαj

(Ni + 1)λy,i
(28)

βi =
1 + (N − 1)ρ− λz,iβjNjρ

[2 + (Ni − 1)ρ]λy,i
(29)

which are identical to (7)-(8).
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For equilibrium price setting, note that the market maker at venue i knows {Ni, Nj} and {yi, zi}

before she chooses the price. Then:

pi = E[v|Ni, Nj , yi, zi]

= δi + λy,iyi + λz,izi

= δi + λyi

[
Niαi + βi

∑
k∈Ki

sk + ui

]
+ λz,i

Njαj + βj
∑
k∈Kj

sk + ai + uj


where δi equals E[v|Ni, Nj , yi = 0, zi = 0] = µ. Then, the projection theorem implies that:

λ = E [vy′] [E(yy′)]
−1

where λ is the vector {λy,i, λz,i}, and y is the vector {yi, zi}. First, expand the term E [vy′] (recall that

E(sk) = 0, ∀k ∈ {1, ..., N}):

E [vy′] = E[vyi , vzi]

= E

( N∑
k=1

sk

)(
Niαi + βi

∑
k∈Ki

sk + ui

)
,

(
N∑
k=1

sk

)Njαj + βj
∑
k∈Kj

sk + ai + uj


= E

( N∑
k=1

sk

)(∑
k∈Ki

sk

)
βi ,

(
N∑
k=1

sk

)∑
k∈Kj

sk

βj


= [1 + (N − 1)ρ]σ2

s [Niβi , Njβj ].
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Now, compute the term [E(yy′)]
−1

(recall that V ar(ai) = S−1i ):

[E(yy′)]
−1

=

 V ar(yi) Cov(yi, zi)

Cov(zi, yi) V ar(zi)


−1

=

β2
i [Niσ

2
s +Ni(Ni − 1)σss] + σ2

u βiβjNiNjσss

βiβjNiNjσss β2
j [Njσ

2
s +Nj(Nj − 1)σss] + S−1i + σ2

u


−1

=
(
σ2
s

)−1 Niβ2
i [1 + (Ni − 1)ρ] +

σ2
u

σ2
s

βiβjNiNjρ

βiβjNiNjρ Njβ
2
j [1 + (Nj − 1)ρ] + 1

Siσ2
s

+
σ2
u

σ2
s


−1

⇐⇒ σ2
s [E(yy′)]

−1
=

1

(βiβj)2(1− ρ)[1 + (N − 1)ρ] +
[
β2
i
1+(Ni−1)ρ

Nj
+ 1

NiNj

σ2
u

σ2
s

] (
1

Siσ2
s

+
σ2
u

σ2
s

)
+ β2

j
1+(Nj−1)ρ

Ni

σ2
u

σ2
s

×

β2
j
1+(Nj−1)ρ

Ni
+ 1

NiNj

(
1

Siσ2
s

+
σ2
u

σ2
s

)
−βiβjρ

−βiβjρ β2
i
1+(Ni−1)ρ

Nj
+ 1

NiNj

σ2
u

σ2
s

 .
Thus (after some simplification):

λ = E [vy′] [E(yy′)]
−1

=
1 + (N − 1)ρ

(βiβj)2(1− ρ)[1 + (N − 1)ρ] +
[
β2
i
1+(Ni−1)ρ

Nj
+ 1

NiNj

σ2
u

σ2
s

] (
1

Siσ2
s

+
σ2
u

σ2
s

)
+ β2

j
1+(Nj−1)ρ

Ni

σ2
u

σ2
s

×
[
βi

(
β2
j (1− ρ) + 1

Nj

(
1

Siσ2
s

+
σ2
u

σ2
s

))
, βj

(
β2
i (1− ρ) + 1

Ni

σ2
u

σ2
s

)]′
. (30)

Substituting (30) into (29) and simplifying gives:

(βiβj)
2(1− ρ) + β2 1

Nj

(
1

Siσ2
s

+
σ2
u

σ2
s

)
=

σ2
u

σ2
s

NiNj

(
1

Siσ2
s

+
σ2
u

σ2
s

)
+ β2

j (1− ρ)

σ2
u

σ2
s

Ni

which, together with (30) and (28), implies the solutions for the trading stage conditional on {Ni, Nj},

(17)-(21). Note that (20) ensures that the second order condition (λy,i > 0) is met. Finally, where

Ni = 0, βi as determined by (19) does not exist. Since there are no institutional traders in any subgame

at venue i with Ni = 0, I set βi equal to an arbitrary constant whenever Ni = 0.

Given the solution to the trading stage, I solve the entry stage in three steps given that institutional

traders never exit the game during the entry stage: (i) solve for the kth IT’s expected profit to entering

venue i given each other IT assigns probability ni to entering the venue; (ii) show that ni 6∈ {0, 1} in

any linear and symmetric equilibrium; and (iii) show that there exists a unique ni ∈ (0, 1) such that

the kth IT’s expected profit to entering either venue are equal. First, the solution to the trading stage
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implies that the kth IT’s expected profit to entering venue i is (after some simplification):

Πi,k := E[xk(v − pi)|k ∈ Ki]

= E

[
βisk(µ+

N∑
l=1

sl − δi − λy,iyi − λz,izi)
∣∣k ∈ Ki

]

= E [A(Si)|k ∈ Ki]σuσs

= (1 + (N − 1)ρ)

(
2− ρ+

1

Siσ2
u

)
σuσs

N−1∑
l=0

(
N−1
l

)
(ni)l(1− ni)N−1−l

√
l + 1

[
(2 + (N − 1)ρ)(2− ρ) + (2 + lρ) 1

Siσ2
u

] . (31)

Note that the denominators of the terms in the series (31) are strictly increasing in l. In addition,

∂
∂ni (n

i)l(1 − ni)N−1−l is strictly increasing in l, with ∂
∂ni (n

i)l(1 − ni)N−1−l > 0 for all l > (N − 1)/2

but ∂
∂ni (n

i)l(1− ni)N−1−l < 0 for all l < (N − 1)/2, which imply that (31) is strictly decreasing in ni.

Then, showing that Πi,k(ni = 0) > Πj,k(ni = 0) and Πi,k(ni = 1) < Πj,k(ni = 1) is sufficient to prove

that ni∗ 6∈ {0, 1}:

Πi,k(ni = 0) > Πj,k(ni = 0)

⇐⇒
2− ρ+ 1

Siσ2
u

(2 + (N − 1)ρ)(2− ρ) + 2 1
Siσ2

u

>
1√

N(2 + (N − 1)ρ)

⇐⇒

√
N(2− ρ+ 1

Siσ2
u

)

2− ρ+ 2
2+(N−1)ρ

1
Siσ2

u

> 1

which is always true (Πi,k(ni = 1) < Πj,k(ni = 1) is proved symmetrically). This as well as that Πi,k

is continuous and strictly decreasing in ni ∈ (0, 1) (and, by symmetry, Πj,k is continuous and strictly

increasing in ni = 1−nj) together imply that the solution to Πi,k(ni) = Πj,k(ni = 1−nj) always exists

and is unique in (0, 1) (i.e. ni∗ exists and is unique in (0, 1)). Finally, it is obvious that Πi,k(ni∗) > 0.

Therefore, no institutional trader leaves the game in the entry stage (i.e. ni∗ = 1− nj∗).

Proof of Proposition 1: By Theorem 1:

N−1∑
m=0

(
N−1
m

) (
ni∗
)m

(1− ni∗)N−1−m
√
m+ 1 [E · (2− ρ) + F (m) ·Gi]

=
2− ρ+Gj
2− ρ+Gi

N−1∑
q=0

(
N−1
q

) (
1− ni∗

)q
(ni∗)N−1−q

√
q + 1 [E · (2− ρ) + F (q) ·Gj ]

(32)

where Gh = 1
Shσ2

u
, E := 2 + (N − 1)ρ and F (m) := 2 +mρ. To prove that ni∗ is strictly decreasing in

Si, I want to show that the (2 − ρ + Gj)/(2 − ρ + Gi) term decreases by a larger proportion than the

left-hand-side of (32), when Si decreases such that Gi increases (holding ni∗ constant). This implies,

because (from the proof to Theorem 1) the left-hand-side of (32) is continuous and strictly decreasing

while the summation in the right-hand-side side is continuous and strictly increasing, that ni∗ must
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decrease to reattain (32). Therefore, it is sufficient to show that
2−ρ+G′

i

2−ρ+Gi ≥
E·(2−ρ)+F (m)·G′

i

E·(2−ρ)+F (m)·Gi holds for

all m ∈ {0, ..., N − 1} and G′i := Gi + ε, ε > 0, and holds with strict inequality for some m. Since

E > F (m), ∀m < N − 1, and E = F (N − 1):

2− ρ+Gi + ε

E · (2− ρ) + F (m) · (Gi + ε)
>

2− ρ+Gi
E · (2− ρ) + F (m) ·Gi

, ∀m < N − 1

and
2− ρ+Gi + ε

E · (2− ρ) + F (N − 1) · (Gi + ε)
=

1

E
=

2− ρ+Gi
E · (2− ρ) + F (N − 1) ·Gi

.

Then, because N ≥ 2, ni∗ is strictly decreasing in Si, and a symmetric argument proves that ni∗ is

strictly increasing in Sj .

Proof of Proposition 3: If Si = Sj = S > 0:

I(yi) + I(zi) =
1 + (Ni − 1)ρ

2 + (Ni − 1)ρ
+

1 + (Nj − 1)ρ

2 + (Nj − 1)ρ+ 1
Sσ2

u

.

Trivially, Ni = Nj implies I(yi) + I(zi) = I(yj) + I(zj). If Ni 6= Nj , then I(yi) + I(zi) = I(yj) + I(zj)

holds if and only if:

1 + (Ni − 1)ρ

2 + (Ni − 1)ρ
− 1 + (Nj − 1)ρ

2 + (Nj − 1)ρ
=

1 + (Ni − 1)ρ

2 + (Ni − 1)ρ+ 1
Sσ2

u

− 1 + (Nj − 1)ρ

2 + (Nj − 1)ρ+ 1
Sσ2

u

which is untrue for any finite S. Now, given Si = Sj = S > 0, (32) becomes:

N−1∑
m=0

(
N−1
m

) (
ni∗
)m

(1− ni∗)N−1−m
√
m+ 1 [E · (2− ρ) + F (m) ·G]

=

N−1∑
q=0

(
N−1
q

) (
1− ni∗

)q
(ni∗)N−1−q

√
q + 1 [E · (2− ρ) + F (q) ·G]

which holds when ni∗ = 1/2. Then, by Theorem 1, ni∗ = 1/2 is the unique solution to (32) in (0, 1),

given Si = Sj = S > 0.

Proof of Proposition 4: Suppose ρ increases from ρ0 to ρ′ := ρ0+ε, ε > 0, and define (only for this proof)

a vector {A(ρ), B(ρ), C(ρ), D(ρ), E} :=
{

1 + (N − 1)ρ , 2− ρ , 2 + (N − 1)ρ , 2 + (Ni − 1)ρ , 1
Siσ2

u

}
. As

a short-hand, for some function X(ρ), I denote X(ρ′) by X ′ and denote X(ρ0) by X. Then, by definition
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(14):

A(Si, ρ = ρ′)−A(Si, ρ = ρ0) =
A′(B′ + E)

C ′B′ +D′E
− A(B + E)

CB +DE
> 0

⇐⇒ A′(B′ + E)(CB +DE)−A(B + E)(C ′B′ +D′E)

= (A+ (N − 1)ε)((B − ε) + E)(CB +DE)

−A(B + E)((C + (N − 1)ε)(B − ε) + (D + (Ni − 1)ρ)E) > 0

⇐⇒ [−A(CB +DE) + (N − 1)(B + E)(CB +DE)

+A(B + E)C − (N − 1)AB(B + E)− (Ni − 1)A(B + E)E]ε

> (N − 1)[(CB +DE)−A(B + E)]ε2. (33)

By choosing a small ε, it is sufficient to show that the left-hand-side of the inequality (33) is strictly

positive:

−A(CB +DE) + (N − 1)(B + E)(CB +DE) +A(B + E)C

− (N − 1)AB(B + E)− (Ni − 1)A(B + E)E

= A(C −D)E + (N − 1)(B + E)

[
(CB +DE)−AB − Ni − 1

N − 1
AE

]
.

Since A(C −D)E = A(N −Ni)E ≥ 0, it is sufficient to show that the other terms are strictly positive:

(CB +DE)−AB − Ni − 1

N − 1
AE = (C −A)B +

(
D − Ni − 1

N − 1
A

)
E

= B +

(
2− Ni − 1

N − 1

)
E

which is strictly positive. The proof from venue j is symmetric, and the I(yi) and I(zi) results are

trivial.

Proof of Proposition 5: If ρ = 0, equation (32) reduces to:

N−1∑
m=0

(
N−1
m

) (
ni∗
)m

(1− ni∗)N−1−m
√
m+ 1

=

N−1∑
q=0

(
N−1
q

) (
1− ni∗

)q
(ni∗)N−1−q

√
q + 1

which is attained if ni∗ = 1/2. Then, by Theorem 1, ni∗ = 1/2 is the unique solution in (0, 1).
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Deriving PDi (equation (25)): The law of total variance and the identity E[v|pi] = pi imply:

V ar(v) = E[V ar(v|pi)] + V ar(E[v|pi]) = E[V ar(v|pi)] + V ar(pi)

⇐⇒ E[V ar(v|pi)] = σ2
v − V ar(pi).

Since PDi := 1− E[V ar(v|pi)]/σ2
v :

PDi = V ar(pi)

= V ar (µ+ λy,iyi + λz,izi)

= λ2y,iV ar(yi) + λ2z,iV ar(zi) + 2λy,iλz,iCov(yi, zi) (34)

Substituting V ar(yi), V ar(zi) and Cov(yi, zi) from the proof to Theorem 1, as well as σ2
v = N(1+(N−

1)ρ)σ2
s into (34) gives the result.

Proof of Proposition 8: Define (for this proof) a vector {A,B,C,D,E, F} := {1 + (N − 1)ρ, 2 + (Ni −

1)ρ, NiN D + 1
N [2 + (NiNj − 1)ρ], 2 + (N − 1)ρ, 1

Siσ2
u
, 2− ρ}. Then:

PDi =
A
[
DF 2 + CFE + Ni

N BE2
]

(DF +BE)
2 .

To show that PDi is strictly increasing in Si (given Ni), it is sufficient to show that the denominator of

PDi increases by a larger proportion than the numerator of PDi when Si decreases so that E increases

to E′ := E + ε, ε > 0. Therefore, it is sufficient to show that:

(
DF +BE′

DF +BE

)2

>
DF 2 + CFE′ + Ni

N B(E′)2

DF 2 + CFE + Ni
N BE2

⇐⇒ F 2 + d1E
′ + d2(E′)2

F 2 + d1E + d2E2
>
F 2 +m1E

′ +m2(E′)2

F 2 +m1E +m2E2
(35)

where d1 := 2FBD , d2 := B2

D2 , m1 := CF
D , and m2 := Ni

N
B
D . Then, the conditions d1 > m1 and d2 > m2

are sufficient to show that (35) holds. Specifically, when the conditions:

1. CF
D < 2FB

D ; and

2. Ni
N

B
D < B2

D2

are satisfied, then (35) is satisfied, which implies that PDi is strictly increasing in Si (but not the other
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way around). The first condition implies:

C < 2DB

⇐⇒
(
Ni
N
−B

)
D < DB − 1

N
[2 + (NiNj − 1)ρ]

= N(N −Ni)ρ+N2
i ρ+ (N − 1)(2− ρ).

Since the left-hand-side of the inequality is negative and the right-hand-side is positive, the first condi-

tion always holds. The second condition implies:

Ni
N
D < B

⇐⇒ Ni
N

(2 + (N − 1)ρ) < 2 + (Ni − 1)ρ

which implies ρ < 2. Therefore, PDi is strictly increasing in Si (given any possible Ni).

For measures Li and PRFTi, it is sufficient to show that A(Si) is strictly increasing in E (thereby

strictly decreasing in Si), given Ni. Recall that A(Si) := A(F+E)
DF+BE . Then, it is sufficient to show that,

for E′ := E + ε, ε > 0:

A(F + E′)

DF +BE′
>
A(F + E)

DF +BE

⇐⇒ DF +BE > B(F + E)

which is satisfied whenever D > B ⇐⇒ 2 + (N − 1)ρ > 2 + (Ni − 1)ρ, which is true whenever

Ni < N .

Proof of Proposition 9: For this proof, it must be shown that the first derivative of
√
NiA(Si) is strictly

positive if and only if Si > S∗i , and is strictly negative if and only if Si < S∗i . The first derivative of
√
NiA(Si) is:

1√
Ni
A(Si)−

ρ 1
Siσ2

u

[2 + (N − 1)ρ](2− ρ) + [2 + (Ni − 1)ρ] 1
Siσ2

u

√
NiA(Si)

which is strictly positive if and only if Si > S∗i , and is strictly negative if and only if Si < S∗i .
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