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Abstract

I decompose the variation of credit spreads for corporate bonds into changing ex-

pected returns and changing expectation of credit losses. Using a log-linearized pricing

identity and a vector autoregression applied to micro-level data from 1973 to 2011, I

find that expected returns contribute to the cross-sectional variance of credit spreads

nearly as much as expected credit loss does. However, most of the time-series variation

in credit spreads for the market portfolio corresponds to risk premiums. The joint

decomposition of bonds and stocks show that expected credit loss for bonds are neg-

atively correlated with expected returns and cash flows for stocks. At the firm level,

both risk premiums and credit loss negatively affect corporate investments.
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1 Introduction

What drives the cross-sectional variation in credit spreads? Credit spreads are higher

when the issuer of a corporate bond faces a higher risk of default and when the rate at

which the corporate bond’s cash flows are discounted rises. Since the expected default

and expected returns are unobservable, past research often relies on structural models of

debt, such as the Merton (1974) model, to decompose credit spreads. However, there is

little agreement on the best measures of expected default loss and expected returns. In

this article, I take advantage of a large panel dataset of the US corporate bond prices and

estimate the conditional expectations without relying on a particular model of default. Based

on these estimates, I quantify the contributions of the default component and the discount

rate component to the credit spread variation.

I apply the variance decomposition approach of Campbell and Shiller (1988a and 1988b)

to the credit spread. In the decomposition, the credit spread plays the role of the dividend-

price ratio for stocks, while credit loss plays the role of dividend growth. This decomposition

framework relates the current credit spread to the sum of expected excess returns and credit

losses over the long run. This relationship implies that, if the credit spread varies, then

either long-run expected excess returns or long-run expected credit loss must vary.

I estimate a VAR involving credit spreads, excess returns, probability of default and

credit rating of the corporate bonds. Since default occurs infrequently, estimating the

expected credit loss and expected returns by running forecasting regressions requires a large

dataset. Therefore, I collect corporate bond prices from the Lehman Brothers Fixed Income

Database, the Mergent FISD/NAIC Database, TRACE and DataStream, which provide an

extensive dataset of the publicly traded corporate bonds from 1973 to 2011. In addition, I

use Moody’s Default Risk Service to make sure that the price observations upon default are

complete, and thus my credit loss measure does not miss bond defaults that occur during

the sample period.
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Based on the estimated VAR, I find that the ratio of volatility of the implied long-run

expected credit loss to the volatility of credit spreads is 0.67, while the ratio of the risk

premium volatility to the credit spread volatility is 0.52. In the world where the credit

spreads are driven solely by the expected default, the volatility ratio for the expected credit

loss would be one, while the ratio for the risk premium would be zero. Instead, about

half of the volatility of credit spreads comes from changing expected excess returns. In

contrast, I show that the drivers for the market-wide variation in credit spreads are mostly

risk premiums, unlike those for the individual bonds. The difference arises due to the

diversification effects: The default shocks are more idiosyncratic than the expected return

shocks, and thus the expected credit loss component is more important at the individual

bond level than at the aggregate market level.

I find a non-linear relationship among risk premiums, expected credit loss and credit

spreads, depending on the credit rating of the bond. Much of the variation in credit spreads

within investment grade (IG) bonds corresponds to the risk premium variation, while the

expected credit loss accounts for a larger fraction of the volatility of the credit spreads of

high yield bonds.

Next, I extend the variance decomposition framework to study the interaction in expected

cash flows and risk premiums between bonds and stocks. To study the interaction, I jointly

decompose the cross-section of bond and stock prices, and find a significant positive correla-

tion in expected cash flows between bonds and stocks, while the risk premium correlation is

insignificant. Interestingly, the correlation between the expected default on bonds and the

risk premium on stocks is negative. Thus, my VAR specification yields the results consistent

with the distress anomaly of Campbell, Hilscher and Szilagyi (2008), who find that a stock

of a firm near default earns lower expected returns.

The previous literature shows the strong link between credit spreads and economic ac-

tivity (e.g. Philippon (2009), Gilchrist, Yankov and Zakrajšek (2009), and Gilchrist, Sim
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and Zakrajšek (2013)). Motivated by their findings, I forecast corporate investment using

the two components of credit spreads identified in the previous analysis. Using the firm-

level panel data, I regress the ratio of investment to capital this year on the expected credit

loss and excess returns at the end of the previous year. At the individual firm level, both

components negatively forecast the investment rates even after controlling for the traditional

proxies for Tobin’s q. These results are in stark contrast with the results at the aggregate

level, in which the risk premium variation dominates the expected credit loss variation in

forecasting investments.

Related Literature

The papers closest to mine are Bongaerts (2010) and Elton, Gruber, Agrawal and Mann

(2001). The idea of applying a variance decomposition approach to corporate bonds starts

in Bongaerts (2010), who decomposes variance of the returns on the corporate bond indices.

This article is a complement to Bongaerts (2010), as I use micro-level data to study the

cross-section of corporate bonds, and decompose credit spreads rather than returns. Elton,

Gruber, Agrawal and Mann (2001) explain the level of the average credit spreads for AA,

A and BBB bonds based on the average probability of default and loss given default. In

contrast, this article decomposes the variance of credit spreads allowing for the time-varying

probability of default and risk premiums. By studying the variance of the credit spreads,

I show a link in movements between the different components of the credit spreads and the

issuers’investment.

In addition, numerous papers explain the credit spread using structural models of debt

(e.g., Leland (1994), Collin-Dufresne and Goldstein (2001), Collin-Dufresne, Goldstein and

Martin (2001), Chen, Collin-Dufresne and Goldstein (2009), Bharmra, Kuehn and Strebulaev

(2010), Chen (2010), and Huang and Huang (2012)), reduced-form models (Duffee (1999)

and Driessen (2005)) or the credit default swap spreads (Longstaff, Mithal and Neis (2005)).

This article differs from the literature as I do not make assumptions about how firms make
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their decisions about their capital structure and defaults, or on what factors drive the firm

value.

This article examines the contribution of variation in expected returns on corporate bond

prices, which complements the excess volatility and return predictability found in stock prices

(e.g., Campbell and Shiller, (1988a and 1998b), Campbell, (1991), Vuolteenaho, (2002), and

Cochrane, (2008 and 2011)). In addition, this paper adds to the literature which studies the

information content in the price ratios of a variety of assets. For Treasury bonds, Fama and

Bliss (1988) and Cochrane and Piazzezi (2005) find that forward rates forecast bond returns,

not future short rates. For foreign exchange, Hansen and Hodrick (1980), Fama (1984), and

Lustig and Verdelhan (2007) show that uncovered interest rate parity does not hold in the

data. Beber (2006), McAndrews (2008), Taylor (2009) and Schwartz (2013) decompose the

yield spreads in the sovereign and money markets.

The rest of the article is organized as follows: Section 2 shows the decomposition of the

credit spread of corporate bonds. I describe the data and show the empirical results in

Section 3. Section 4 presents a joint variance decomposition of bonds and stocks. Section

5 examines the variance decomposition at the market level, and the effect of risk premiums

and expected credit losses on firms’ investment decisions. Section 6 provides concluding

remarks.

2 Decomposition of Corporate Bond Credit Spreads

2.1 Log-linear Approximation of Bond Excess Returns

I log-linearize excess returns on a corporate bond to obtain a linear relationship among log

excess returns, credit spreads and credit loss. I consider the strategy where an investor buys

and holds an individual corporate bond i until it matures or defaults. If the bond defaults,

the investor sells the defaulted bond and buys the Treasury bond with the same coupon rate

5



and remaining time to maturity as the defaulting bond.

Let Pi,t be the price per one dollar face value for corporate bond i at time t including

accrued interest, and Ci,t be the coupon rate. Then, the return on the bond is

Ri,t+1 =
Pi,t+1 + Ci,t+1

Pi,t
.

Suppose that there is a matching Treasury bond for corporate bond i, such that the

matching Treasury bond has an identical coupon rate and repayment schedule as corporate

bond i. Let P f
i,t and C

f
i,t be the price and coupon rate for such a Treasury bond. Then, the

return on the matching Treasury bond is

Rf
i,t+1 =

P f
i,t+1 + Cf

i,t+1

P f
i,t

.

As I do not have the data for the loss upon default for coupon payments, I assume that

the rate of credit loss (defined below) for the coupons is the same as the rate for the principal.

I log-linearize both Ri,t+1 and R
f
i,t+1 using the same expansion point, ρ ∈ [0, 1).

The log return on corporate bond i, in excess of the log return on the matching Treasury

bond, can then be approximated as

rei,t+1 ≡ logRi,t+1 − logRf
i,t+1 ≈ −ρsi,t+1 + si,t − li,t+1 + const, (1)

where

si,t ≡

 log
P fi,t
Pi,t

if t < tD,

0 otherwise.
(2)

li,t ≡

 log
P fi,t
Pi,t

if t = tD,

0 otherwise,
(3)
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where tD is the time of default. The variable si,t measures credit spreads while li,t measures

the credit loss upon default. Equation (1) implies that the excess return on corporate bond i

is low due to either widening credit spreads or defaults. In Appendix A, I show the detailed

derivation of (1).

The credit spread measure, si,t, is the price spreads rather than a yield spread. Price

spreads have important advantages over yield spreads: The price spread has a definition

based on a simple formula. Therefore, si,t can be approximated using a linear function of

si,t+1, r
e
i,t+1 and li,t+1 in (1) without inducing large approximation errors. In contrast, yield

spreads for coupon bearing bonds can only be defined implicitly and computed numerically,

which makes it hard to express the bond returns using a linear function of yield spreads.

However, the price spread, si,t, is closely related to the commonly used yield spread, since

a price change can be approximated by a change in yields multiplied by duration.1 Thus,

both spreads are, conceptually and empirically, closely tied together, and the analysis on the

price spreads is useful in understanding the information content in the yield spreads.

The credit loss measure, li,t, encodes the information about both the incidence of default

and the loss given default. The loss given default is measured using the market price of the

corporate bonds upon default. As such, this measure of loss given default is the loss for

an investor who invests in corporate bonds. This measure of credit loss is consistent with

the way in which Moody’s estimates the loss given default,2 which is widely used in pricing

credit derivatives.

To determine if a bond is in default, I follow Moody’s (2011) definition of defaults. A

bond is in default if there is (a) missed or delayed repayments, (b) a bankruptcy filing or legal

1The average cross-sectional correlation between the price spreads and the yield spreads in my sample is
0.82, while the correlation between the price spreads and the yield spreads times duration is 0.97.

2For example, Moody’s (1999) reports "One methodology for calculating recovery rates would track all
payments made on a defaulted debt instrument, discount them back to the date of default, and present them
as a percentage of the par value of the security. However, this methodology, while not infeasible, presents
a number of calculation problems and relies on a variety of assumptions.... For these reasons, we use the
trading price of the defaulted instrument as a proxy for the present value of the ultimate recovery."
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receivership that will likely cause a miss or delay in repayments, (c) a distressed exchange

or (d) a change in payment terms that results in a diminished financial obligations for the

borrower. The definition does not include so-called technical defaults, such as temporary

violations of the covenants regarding financial ratios, and slightly delayed payments due to

technical or administrative errors.

None of the variables on the right-hand side of (1) depend on the coupon payments.

Since the corporate bond and the Treasury bond have the same coupon rates, the coupons

cancel each other. As a result, there is no seasonality in these variables, enabling one to use

monthly returns for the decomposition. Moreover, the decomposition results are not subject

to the assumption of the cash flow reinvestment, a point emphasized in Chen (2009).3

The difference equation (1) approximates log excess returns using the first-order Taylor

expansion. In the empirical work below, I set the value of ρ to be 0.992, which minimizes

the approximation error in (1). I show below that the approximation error is small and does

not affect my empirical results.

Now I iterate the difference equation forward up to the maturity of bond i, Ti. That is,

si,t ≈
Ti−t∑
j=1

ρj−1rei,t+j +

Ti−t∑
j=1

ρj−1li,t+j + const. (4)

If the bond defaults at tD < Ti, the investor adjusts the position such that rei,t = li,t = 0

for t > tD. Therefore, I can still iterate the difference equation forward up to Ti with no

consequences.

Since (4) holds path-by-path, the approximate equality holds under expectation. Taking

3Chen (2009) points out that the use of annual horizon makes it necessary to make an assumption
about how the cash flows paid out in the middle of a year are reinvested by investors, and the variance
decomposition results are sensitive to such assumptions. Since the coupon payments from the corporate
bond and the Treasury bond offset with each other, the variance decomposition in this article does not rely
on the assumption about cash flow reinvestments.
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the time t conditional expectation of the both sides of (4), we have

si,t ≈ E

[
Ti−t∑
j=1

ρj−1rei,t+j

∣∣∣∣∣Ft
]

+ E

[
Ti−t∑
j=1

ρj−1li,t+j

∣∣∣∣∣Ft
]

+ const, (5)

where Ft is the information set of economic agents.

Equation (5) shows that the variation in credit spreads can be decomposed into long-run

expected excess returns or credit loss without leaving unexplained residuals. The movement

in credit spreads must forecast either excess returns or defaults. The basic idea behind this

decomposition is the same as that behind the decomposition of the price-dividend ratio for a

stock. Since corporate bonds have fixed cash flows, the only source of shocks to cash flows

is credit loss. Thus, the term li,t plays a role analogous to dividend growth for equities. In

the case of corporate bonds, however, we have si,Ti = 0 by construction. As a result, I do

not have to impose the condition in which ρjsi,t+j tends to zero, as j goes to infinity.

Let us define the long-run expected credit loss as

sli,t ≡ E

[
Ti−t∑
j=1

ρj−1li,t+j

∣∣∣∣∣Ft
]
.

We can then measure how much the volatility of si,t corresponds to the volatility of the ex-

pected credit loss by the ratio σ
(
sli,t
)
/σ (si,t). To evaluate the magnitude of σ

(
sli,t
)
/σ (si,t),

it is useful to set a benchmark case, in which all volatility in the credit spread is associated

with the expected credit loss.

Definition. The expected credit loss hypothesis holds if a change in the credit spread

only reflects the news about the expected credit loss. That is,

si,t = sli,t + const,

holds.
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Under the expected credit loss hypothesis, σ
(
sli,t
)
/σ (si,t) = 1 holds. Therefore, using

the hypothesis as a benchmark, we can ask how far from one the estimated volatility ratio is.

The expected credit loss hypothesis also implies that the long-run expected excess returns,

E
[∑Ti−t

j=1 ρ
j−1rei,t+j

∣∣∣Ft] , are constant.
The expected credit loss hypothesis is the corporate bond counterpart of the expectation

hypothesis for interest rates and of uncovered interest rate parity for foreign exchange rates.

These hypotheses share the same basic idea that the current scaled price should reflect the

future fundamentals in an unbiased way. If these hypotheses fail, either due to time-varying

risk premiums or irrational expectations, then the excess returns are forecastable using the

scaled price.

3 Empirical Results

3.1 Data

I construct the panel data of corporate bond prices from the Lehman Brothers Fixed Income

Database, the Mergent FISD/NAIC Database, TRACE and DataStream. Appendix B

provides a detailed description of these databases. When there are overlaps among the four

databases, I prioritize in the following order: the Lehman Brothers Fixed Income Database,

TRACE, Mergent FISD/NAIC and DataStream. I check whether the main result is robust

to the change in orders in Appendix B. If the observation is missing in the databases above,

I use Moody’s Default Risk Service to complement the price upon default. CRSP and

Compustat provide the stock prices and accounting information.

I remove bonds with floating rates and with option features other than callable bonds.

Until the late 1980s, very few bonds were non callable, and thus removing callable bonds

would significantly reduce the length of the sample period. Crabbe (1991) estimates that

call options contribute nine basis points to the bond spread, on average, for investment grade
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bonds. Therefore, the effect of call options does not seem large enough to significantly affect

my results. To show the robustness of the results, I include fixed effects for callable bonds,

repeat the main exercise in the online appendix,4 and show that callability does not drive

the main results.

I apply three filters to remove the observations that are likely to be subject to erroneous

recording. First, I remove the price observations that are higher than matching Treasury

bond prices. Second, I drop the price observations below one cent per dollar. Third, I

remove the return observations that show a large bounceback. Specifically, I compute the

product of the adjacent return observations and remove both observations if the product is

less than −0.04.

In order to compute excess returns and credit spreads, I construct the prices of the syn-

thetic Treasury bonds that match the corporate bonds using the Federal Reserve’s constant-

maturity yields data. The methodology is detailed in Appendix B.

3.2 Estimation by a VAR

I estimate the conditional expectations in (5) and measure their volatilities, based on a VAR.

To focus on the cross-sectional variation, I subtract the cross-sectional mean at time t from

the state variables, and denote them with tilde. In the basic setup, I use a vector of state

variables,

Xi,t =

(
r̃ei,t di,ts̃i,t τ i,tz̃i,t

)′
, (6)

where di,t is a vector of dummy variables for credit ratings defined by di,t =

(
1 dBaai,t dBai,t dB−i,t

)
,

and dθi,t is the dummy for rating θ, τ i,t is the bond’s duration and zi,t is a vector of state

variables other than r̃ei,t and s̃i,t.

4The online appendix can be found at: https://sites.google.com/site/yoshiofinancialeconomics/home/research
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The dynamics of the state variables is given by

Xi,t+1 = AXi,t +Wi,t+1. (7)

Matrix A is held constant both over time and across bonds. This VAR specification

implies that ex-ante, a bond is expected to behave similarly to other bonds with the same

values of the state variables. I also assume that Wi,t is independent over time but can be

correlated across bonds.

To address the concern about the assumption of constant coeffi cient A, I allow two

interaction terms to better capture the dynamics.

First, by interacting s̃i,t with di,t, I allow the VAR coeffi cient to change based on the

bond’s credit rating. I show later that there is a significant non-linearity between expected

credit loss and credit spreads, which is well captured by this interaction term.

Second, since many structural models of debt (e.g., Merton (1974)) or reduced form

models (e.g., Duffi e and Singleton (1999)) imply that the expected returns and the risk of

a corporate bond depend on its time to maturity, the state variables zi,t are scaled by the

bond’s duration. The price spread, s̃i,t, has a convenient feature in that it tends to shrink

with its duration: Since a price spread is roughly equal to a yield spread times the bond’s

duration, holding yield spreads constant, s̃i,t tends to zero as the bond approaches maturity.

Thus, I do not scale s̃i,t with duration.

Let ei, i = 1, 2 be unit vectors whose i−th entry is one while the other entries are zero.

Then, the long-run expected loss and excess returns implied by the VAR is

s̃li,t = E

[
Ti−t∑
j=1

ρj−1l̃i,t+j

∣∣∣∣∣Xi,t

]
= eLG (Ti)Xi,t, (8)

s̃ri,t = E

[
Ti−t∑
j=1

ρj−1r̃ei,t+j

∣∣∣∣∣Xi,t

]
= e1G (Ti)Xi,t, (9)
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where G (Ti) ≡ A (I − ρA)−1
(
I − (ρA)Ti−t

)
and eL = −ρe2 + e2A

−1 − e1.5

Since we condition on Xi,t ⊆ Fi,t, the estimated volatilities based on the VAR, σ
(
s̃li,t
)

and σ
(
s̃li,t
)
, give the lower bound for the true volatility based on the agent’s information set.

By identity (4),

e1G (Ti) + eLG (Ti) =

(
0 1 0 . . . 0

)
(10)

holds. Moreover, the expected credit loss hypothesis implies

e1G (Ti) =

(
0 0 0 . . . 0

)
,

eLG (Ti) =

(
0 1 0 . . . 0

)
,

must hold.

Unlike the forecasting coeffi cients in (10), the volatility ratios for expected credit loss,

σ
(
sli,t
)
/σ (si,t), and expected excess returns, σ

(
sri,t
)
/σ (si,t), do not have to add up to one,

due to the covariance between expected credit loss and expected excess returns.

For statistical inference, I compute the standard errors of the VAR-implied long-run

coeffi cients and volatility ratios by the delta method. To this end, I numerically calculate

the derivative of the long-run coeffi cients and volatility ratios with respect to the VAR

parameters.

5To obtain (8), I use the one-period identity in (1). Solving for l̃i,t+1 and taking the conditional expec-
tation, we have

E
[
l̃i,t+j

∣∣∣Xi,t

]
= E [−ρe2Xi,t+j + e2Xi,t+j−1 − e1Xi,t+j |Xi,t] ,

= eLA
jXi,t.

Plugging E
[
l̃i,t+j

∣∣∣Xi,t

]
into E

[∑
ρj−1 l̃i,t+j

∣∣∣Xi,t

]
yields (8).
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3.3 Main Results

In this section, I estimate the VAR in (7) and quantify the contribution of the volatility of

expected credit loss and excess returns to the changes in credit spreads. I start from the

simple case in which the state vector includes only excess returns, r̃ei,t, credit spreads, di,ts̃i,t,

and the probability of default in the Merton model times duration, τ ˜PDi,t
6. (I drop the

subscripts from τ i,t to save notation.) I use excess returns instead of credit loss, as credit

loss in the right-hand side of the regression is mostly zero. I include probability of default

based on the Merton (1974) model, because it is known to forecast default (e.g., Gropp, Lo-

Duca and Vesala (2006) and Harada, Ito and Takahashi (2010)), and Gilchrist and Zakrajšek

(2012) use the Merton (1974) model to decompose their measure of credit spreads.

I run pooled OLS regressions using demeaned state variables to estimate the VARs. To

account for the cross-sectional correlation in error terms, I cluster standard errors by time.7

Table 1 shows the summary statistics of the variables. The statistics are computed using

the panel data of all bonds in the sample. Panel A shows the raw data before demeaning.

The excess returns are distributed symmetrically, while the probability of default, credit

spreads and credit loss are right-skewed. Panel B shows the demeaned data to for the VAR

estimates, in which the cross-sectional mean is subtracted from each observation. Demeaning

does not significantly reduce the volatility of the variables, while it somewhat reduces the

skewness of credit loss.

Panel C presents the estimated VAR coeffi cients. Excess returns tend to be higher when

6PDi,t = Φ (−d2,i,t),
where

d2,i,t =
logAi,t/K +

(
rf − 0.5σ2

A

)
σA

and Ai,t is the firm’s asset value, K is the book value of short-term debt plus half of the long-term debt, rf
is the risk-free rate and σA is the asset volatility. I use rf following Bharath and Shumway (2008). The
methodology to compute PDi,t is explained in the online appendix. Using d2,i,t in place of the probability
of default, PDi,t, does not change the results.

7In the online appendix, I compare the clustered standard errors with the standard errors from boot-
strapping which confirms the reliability of the statistical inference.
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Table 1: Summary Statistics of the Variables and Estimated VAR: Monthly from 1973 to
2011
Panel A: Descriptive Statistics, Basic Data
Variable Mean Std. 5%-pct 25%-pct Median 75%-pct 95%-pct

rei,t 0.07 3.22 -4.10 -0.96 0.11 1.18 4.24
si,t 11.11 11.09 1.27 4.14 8.04 14.62 30.31
li,t 0.03 2.10 0 0 0 0 0

τPDi,t 2.01 15.47 0.00 0.00 0.00 0.00 2.89
reqi,t 0.82 9.15 -12.52 -3.31 1.08 5.38 13.55

bmi,t -26.50 75.76 -160.07 -67.13 -13.96 21.86 68.80

Panel B: Descriptive Statistics, Demeaned Data
Variable Mean Std. 5%-pct 25%-pct Median 75%-pct 95%-pct

r̃ei,t 0 2.69 -2.84 -0.78 0.01 0.81 2.93
s̃i,t 0 10.16 -10.92 -5.65 -2.04 3.51 16.71
l̃i,t 0 2.09 -0.16 0 0 0 0

τ ˜PDi,t 0 14.90 -6.74 -1.47 -0.64 -0.30 0.54
r̃eqi,t 0 7.94 -11.08 -3.57 0.04 3.75 11.19

˜bmi,t 0 65.49 -108.83 -28.54 4.92 32.15 94.00

Panel C: VAR estimates, A× 100

r̃ei,t s̃i,t s̃i,td
Baa
i,t s̃i,td

Ba
i,t s̃i,td

B−
i,t τ ˜PDi,t R2

r̃ei,t+1 -3.61 2.81 -0.16 0.24 -2.23 -0.31 0.01
(2.02) (0.67) (0.30) (0.61) (0.72) (0.27)

s̃i,t+1 10.51 97.76 0.29 -0.21 -3.03 0.28 0.91
(2.76) (0.68) (0.32) (0.62) (1.09) (0.25)

s̃i,t+1d
Baa
i,t+1 3.93 0.91 95.07 0.16 -0.68 -0.07 0.90

(0.47) (0.12) (0.81) (0.26) (0.15) (0.10)
s̃i,t+1d

Ba
i,t+1 1.97 0.18 1.31 92.49 0.11 -0.10 0.84

(0.50) (0.07) (0.22) (0.94) (0.09) (0.06)
s̃i,t+1d

B−
i,t+1 0.10 -0.16 0.23 3.68 93.83 0.61 0.86

(2.23) (0.08) (0.09) (0.59) (1.16) (0.15)
τ ˜PDi,t+1 -4.14 1.74 -0.36 1.62 3.29 96.69 0.93

(1.41) (0.39) (0.45) (0.63) (0.89) (1.06)

Panel A reports the statistics for the raw data, while in Panel B the variables are market-adjusted by
subtracting the cross-sectional average each month. Means, standard deviations and percentiles (5, 25,
50, 75, and 95 percent) are estimated using the monthly panel data from January 1973 to December 2011.
All the variables are shown in percentage. rei,t is the log return on the corporate bonds in excess of the
matching Treasury bond, li,t is the credit loss, si,t is the credit spread of the corporate bonds, τPDi,t is the
probability of default implied by the Merton model times the bond’s duration, reqi,t is issuer’s equity return
in excess of T-bill rate and bmi,t is log issuer’s equity book-to-market ratio. Panel C shows the estimated
VAR coeffi cients, multiplied by 100. dθi,t is a dummy variable for the rating θ. The number of observations
is 791,864 bond months, and there are 260 default observations.
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past excess returns are low, credit spreads are high, or the issuer is less likely to default. The

predictive power of credit spreads is strong for most of the credit ratings, with a coeffi cient of

2.81 for A+ (rated Aaa, Aa or A) bonds, 2.81-0.16=2.65 for Baa bonds, and 2.81+0.24=3.05

for Ba bonds. The credit spreads and probability of default are fairly autonomous and are

forecastable mostly by their own past values.

Panel A of Table 2 shows the VAR-implied long-run forecasting coeffi cients in (8) and

(9). Holding everything else constant, when credit spreads go up by one, the expected

long-run credit loss goes up by 0.09 for A+ bonds, 0.18 for Baa bonds, 0.46 for Ba bonds

and 0.89 for B- (rated B or below) bonds. Under the benchmark case of the expected credit

loss hypothesis, the slope coeffi cient on credit spreads must be one. In the data, except for

highly risky bonds, the estimated long-run credit loss forecasting coeffi cients are significantly

below one. Panel A also shows that the probability of default in the Merton (1974) model

helps forecast default in the long-run, with a coeffi cient estimate of 0.12.

Since credit spreads must forecast either credit loss or excess returns in the long-run,

lower long-run credit loss forecasting coeffi cients imply higher return forecasting coeffi cients.

A unit increase in credit spreads corresponds to an increase of 0.90 in risk premium for A+

bonds, 0.81 for Baa bonds, 0.54 for Ba bonds and 0.12 for B- bonds, showing significant

dependence of the coeffi cients on ratings.

To examine the effect of the nonlinearity, I plot the long-run credit loss and excess

return forecasting coeffi cients on credit spreads, eLG
(
T̄
)
and e1G

(
T̄
)
in Figure 1. Figure

1 visualizes how the slope differs across credit ratings and thereby shows the degree of

nonlinearity in the long-run VAR. Within the range of IG ratings, the expected credit loss

forecasting coeffi cients are close to zero, and thus the line is rather flat. In contrast, the

excess return forecasting coeffi cients are close to one, leading to the steep line. This implies

that the variation in credit spreads within the IG ratings corresponds mostly to the variation

in expected excess returns. However, as the credit spread increases, the line for expected
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Table 2: Implied Long-Run Regression Coeffi cients and Volatility Ratios
Panel A: Long-run regression coeffi cients, eLG(T̄ ) and e1G(T̄ )

r̃ei,t s̃i,t s̃i,td
Baa
i,t s̃i,td

Ba
i,t s̃i,td

B−
i,t τ ˜PDi,t σ(Et[·])∑T̄

j=1 ρ
j−1 l̃i,t+j -0.05 0.09 0.09 0.37 0.80 0.12 6.71

(0.02) (0.06) (0.04) (0.09) (0.09) (0.06)∑T̄
j=1 ρ

j−1r̃ei,t+j 0.05 0.90 -0.09 -0.36 -0.78 -0.12 5.25
(0.02) (0.07) (0.04) (0.09) (0.09) (0.06)

Panel B: Variation of VAR-implied conditional expectations
σ(s̃l)
σ(s̃)

σ(s̃r)
σ(s̃) %(s̃l, s̃) %(s̃r, s̃) %(s̃l, s̃r)

Estimates 0.67 0.52 0.76 0.64 0.18
(0.12) (0.06) (0.03) (0.14) (0.20)

Panel C: Regression of credit loss on information
r̃ei,t s̃i,t s̃i,td

Baa
i,t s̃i,td

Ba
i,t s̃i,td

B−
i,t τ ˜PDi,t R2

l̃i,t+1 -6.98 0.11 -0.18 -0.06 5.59 0.02 0.05
(2.09) (0.09) (0.07) (0.23) (0.88) (0.14)

l̃′i,t+1 -6.82 0.19 -0.13 -0.04 5.24 0.03 0.04
(2.13) (0.09) (0.08) (0.24) (0.89) (0.14)

Panel D: Directly forecasting credit loss
σ(s̃l)
σ(s̃)

σ(s̃r)
σ(s̃) %(s̃l, s̃) %(s̃r, s̃) %(s̃l, s̃r)

Estimates 0.69 0.54 0.75 0.60 0.10
(0.13) (0.05) (0.03) (0.15) (0.20)

Panel E: Long VAR
σ(s̃l)
σ(s̃)

σ(s̃r)
σ(s̃) %(s̃l, s̃) %(s̃r, s̃) %(s̃l, s̃r)

Estimates 0.52 0.59 0.73 0.63 0.24
(0.11) (0.06) (0.05) (0.16) (0.16)

The sample period is monthly from 1973 to 2011. Panel A shows the VAR-implied long-run coeffi cient

for a bond with the average maturity, eLG(T̄ ) and e1G(T̄ ) where G(T̄ ) = A (I − ρA)
−1
(
I − (ρA)

T̄−t
)
.

σ (Et[·]) shows the sample standard deviation of fitted values of the left-hand side variables. dθi,t is a
dummy variable for the rating θ. Panel B shows the summary statistics of the long-run expected credit
loss, s̃li,t = eLG (Ti)Xi,t, and the long-run expected returns, s̃ri,t = e1G (Ti)Xi,t. % (·, ·) shows the sample
correlation coeffi cient. Panel C shows the credit loss forecasting regression, l̃i,t = blXi,t + εli,t. l̃′i,t is the
credit loss implied from the identity (1), so that l′i,t ≡ −ρsi,t + si,t−1 − rei,t. Panel D shows the summary
statistics of the long-run expected credit loss and excess returns, based on the VAR where I replace r̃ei,t+1

with r̃e′i,t+1 ≡ −ρs̃i,t+1 + s̃i,t − l̃i,t+1. Panel E shows the estimates based on the VAR, where the state
variables include lagged credit spreads times rating dummies, 3 lags of bond excess returns, probability of
default, the issuers’stock returns, log book-to-market ratio, log market size of equity and log share price
(winsorized at 15 dollars). Standard errors, reported in parentheses under each coeffi cient, are clustered by
time.
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credit loss starts to steepen, while the line for expected excess returns begins to flatten out.

Figure 1: Long-Run Forecasting Coeffi cients By Credit Ratings
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The x-axis is the demeaned credit spreads, with the left end set by the 1st percentile of credit spreads and the

right end set by the 99th percentile. The y-axis is the long-run expected credit loss, Et
[∑

ρj−1 l̃i,t+j

]
, and

excess returns, Et
[∑

ρj−1r̃ei,t
]
, and the slope of the line is the long-run forecasting coeffi cients in Panel A of

Table 2. Dashed lines denote +/- standard-error bounds. The borders between credit ratings are set where
the histogram of the credit spreads for the credit rating overlaps with the histogram for the neighboring
credit ratings.

Despite the low R-squared in the return forecasting regression in Panel C of Table 1, the

return predictability is economically significant: The standard deviation of expected returns

is 0.24 percent per month (not reported in the table) and 5.25 percent in the long-run (Panel

A, Table 2). The variation in expected returns is large compared with the variation found

in the previous literature. For example, Gebhardt, Hvidkjaer and Swaminathan (2005) find

that the difference in average excess returns between different credit ratings is 0.07 percent

per month and the difference between different durations is 0.04 percent.

Panel B of Table 2 shows the ratio of the volatility of expected credit loss and excess

returns to the credit spreads, quantifying the magnitude of the contribution of these two

components. The volatility ratio for the credit loss is 0.67, while the ratio for the risk

premium is 0.52. Thus, the magnitude of variation of these two components of credit
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spreads are comparable to each other. The correlation between these two components and

credit spreads is also similar to each other at 0.76 and 0.64. The volatility ratio for expected

excess returns is highly significantly different from zero, and thus the expected credit loss

hypothesis is rejected in the data. The correlation between the expected credit loss and

excess returns is positive but insignificant.

In this VAR, I forecast credit loss indirectly by forecasting returns and credit spreads.

Whether forecasting credit loss directly or indirectly does not matter if the log-linear ap-

proximation in (1) holds well. In Panel C, I compare the credit loss forecasting regressions

for l̃i,t and l̃′t ≡ −ρs̃i,t+1 + s̃i,t− r̃ei,t+1 using the same state vector as Panel A. The regression

coeffi cients for l̃i,t and l̃′t are similar to each other, and the gaps are within one standard

error. In Panel D, I report the variance decomposition results based on the VAR replacing

r̃ei,t+1 with r̃
e′
i,t+1 ≡ −ρs̃i,t+1 + s̃i,t − l̃i,t+1, and thus forecasting credit loss directly. The

volatility ratio for expected credit loss becomes 0.69, little changed from the estimate in

Panel B (0.67). Thus, the approximation error is not driving the results, and it does not

matter whether I forecast excess returns or credit loss.

Panel E of Table 2 shows the estimates based on a “long”VAR which adds 2 extra lags

of excess returns and probability of default, and 3 lags of the issuers’ stock returns, log

book-to-market ratio, log market size of equity and log share price (winsorized at 15 dollars)

to the main VAR specification in (6). To select these state variables, I first run a VAR using

all the state variables tested in Duffi e, Saita and Wang (2007) and Campbell, Hilscher and

Szilagyi (2008) in forecasting defaults, and choose the variables that remain significant in

forecasting long-run credit loss in my sample. The resulting volatility ratio is 0.52 for the

expected credit loss and 0.59 for the expected excess returns. The correlations between the

two components and credit spreads are 0.74 and 0.65. Therefore, the overall results that

the contributions of the two components to the variation in credit spreads are comparable

to each other do not depend on a particular VAR specification.
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In the online appendix, I show that the variance decomposition results are robust to the

small sample biases, and not affected by the state tax effects pointed out by Elton, Gruber,

Agrawal and Mann (2001). Though the state tax can affect the level of the state variables,

it does not change their movements. Finally, I show that the main results in Table 2 are

robust, even if I interact rei,t and τPDi,t with the rating dummies, interact all variables with

duration dummies to account for the maturity effect non-parametrically, or include industry

fixed effects in estimating the VAR to account for the difference in credit spreads across

industries.

4 Joint Decomposition with Stocks

In this section, I show the joint variance decomposition of bonds and the book-to-market

ratio of stocks, and examine the interaction between bonds and stocks. I work on the book-

to-market ratio rather than the dividend price ratio, as I focus on the issue-level variation

in stock prices and many firms don’t pay dividends. Vuolteenaho (2002) shows that the log

book-to-market ratio of a stock can be expressed using a present value identity,

bmi,t ≈ E

[ ∞∑
j=1

ρj−1eq reqi,t+j

∣∣∣∣∣Ft
]

+ E

[ ∞∑
j=1

ρj−1eq (yi,t+j − rft+j)
∣∣∣∣∣Ft
]
, (11)

where bmi,t is the log book-to-market ratio, r
eq
i,t+j is a return on stock in excess of the log

T-bill rate, yi,t+j is a log book return on equity defined by yi,t+j = log (1 + Yt+j/Bt+j−1)

where Yt+j is earnings and Bt+j−1 is book equity, and rft+j is log T-bill rates. The discount

coeffi cient ρeq is set to be 0.967, following Vuolteenaho (2002).

Equation (11) shows that a stock’s book-to-market ratio can be decomposed into the risk

premium and profitability components. By jointly decomposing bonds and stocks, we can

study the interaction in risk premiums and cash flows between bonds and stocks. If the

Merton (1974) model holds, then the risk premiums and cash flows for bonds and stocks are
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perfectly correlated. If there are more risk factors other than firm value, or if the bond and

stock markets are segmented, then such relationship may break down.

I estimate the conditional expectations by jointly estimating the VAR for bonds and

stocks. To this end, I augment the state vector with stock variables,

Xi,t =

(
r̃ei,t di,ts̃i,t τ ˜PDi,t r̃eqi,t

˜bmi,t

)
, (12)

which follows the same dynamics Xi,t = AXi,t−1 +Wi,t. Then the long-run risk premium on

the stock can by found by

˜bm
y

i,t ≡ E

[ ∞∑
j=1

ρj−1eq (ỹi,t+j − rfi,t+j)
∣∣∣∣∣Xi,t

]
= eyGeq (∞)Xi,t,

˜bm
r

i,t ≡ E

[ ∞∑
j=1

ρj−1eq r̃eqi,t+j

∣∣∣∣∣Xi,t

]
= e7Geq (∞)Xi,t,

where Geq (∞) = A
(
I − ρeqA

)−1
, ey = e7 + ρeqe8 − e8A−1, e7 is a unit vector whose seventh

entry (corresponding to r̃eqi,t) is one and other entries are zero, and e8 is a unit vector whose

eighth entry (corresponding to ˜bmi,t) is one and other entries are zero.

As I use a subsample of firms who issue corporate bonds, the stocks in my analysis

are quite different from the entire universe of stocks. Most notably, 84 percent of the

observations (in bond-months) correspond to “Big” stocks that are larger than the 50th

NYSE percentile, 16 percent is "Small" stocks that are between the 20th and 50th NYSE

percentiles, while the fraction for “Micro”stocks is negligible. In contrast, Fama and French

(2008) report that “Micro”stocks account for more than half of their sample of stocks. Large

firms issue more bonds than small firms do, and thus my sample tends to be dominated by

large firms who have multiple corporate bond issues.

I report the estimated VAR coeffi cients in Appendix C. Table 3 reports the VAR-implied

long-run expectations. Panels A and B show that including stock variables does not ma-
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Table 3: Joint Decompostion of Bond and Stock Prices
Panel A: Long-run regression coeffi cients, eLG(T̄ ), e1G(T̄ ), eyGeq (∞) and e7Geq (∞)

r̃ei,t s̃i,t s̃i,td
Baa
i,t s̃i,td

Ba
i,t s̃i,td

B−
i,t τ ˜PDi,t r̃eqi,t

˜bmi,t σ(Et[·])∑T̄
j=1 ρ

j−1 l̃i,t+j -0.04 0.04 0.10 0.35 0.78 0.06 -0.03 0.02 5.96
(0.01) (0.04) (0.04) (0.10) (0.13) (0.04) (0.01) (0.01)∑T̄

j=1 ρ
j−1r̃ei,t+j 0.04 0.94 -0.09 -0.34 -0.77 -0.06 0.03 -0.02 5.48

(0.01) (0.05) (0.04) (0.10) (0.13) (0.04) (0.01) (0.01)∑∞
j=1 ρ

j−1 (ỹi,t+j − rft+j) 0.11 0.01 0.03 -0.33 -0.76 -0.19 0.02 -0.99 66.73
(0.04) (0.13) (0.09) (0.17) (0.21) (0.15) (0.02) (0.03)∑∞

j=1 ρ
j−1r̃eqi,t+j 0.11 0.01 0.03 -0.33 -0.76 -0.19 0.02 0.01 6.52

(0.04) (0.13) (0.09) (0.17) (0.21) (0.15) (0.02) (0.03)

Panel B: Variation of VAR-implied conditional expectations for corporate bonds
σ(s̃l)
σ(s̃)

σ(s̃r)
σ(s̃) %(s̃l, s̃) %(s̃r, s̃) %(s̃l, s̃r)

Estimates 0.60 0.55 0.75 0.69 0.25
(0.13) (0.06) (0.02) (0.13) (0.20)

Panel C: Variance decomposition of stocks and their correlation
σ( ˜bm

y
)

σ( ˜bm)

σ( ˜bm
r
)

σ( ˜bm)
%(s̃l, ˜bm

y
) %(s̃r, ˜bm

r
) %(s̃l, ˜bm

r
) %(s̃r, ˜bm

y
)

Estimates 1.02 0.10 -0.43 -0.16 -0.94 0.03
(0.04) (0.04) (0.06) (0.18) (0.07) (0.13)

The sample period is monthly from 1973 to 2011. Panel A shows the VAR-implied long-run coeffi cient

for a bond with the average maturity, eLG(T̄ ) and e1G(T̄ ) where G(T̄ ) = A (I − ρA)
−1
(
I − (ρA)

T̄−t
)
,

and for stocks, eyGeq (∞) and e7Geq (∞), where Geq(∞) = A
(
I − ρeqA

)−1
. r̃eqi,t is log equity return in

excess of T-bill rate, ˜bmi,t is log book-to-market ratio, ỹi,t is book return on equity, rft is T-bill rate, dθi,t
is a dummy variable for the rating θ. σ (Et[·]) shows the sample standard deviation of fitted values of
the left-hand side variables. Panel B shows the summary statistics of the long-run expected credit loss
for bonds, s̃li,t = eLG (Ti)Xi,t, and the long-run expected returns, s̃ri,t = e1G (Ti)Xi,t. % (·, ·) shows the
sample correlation coeffi cient. Panel C shows the summary statistics for the long-run expected profitability
for stocks, ˜bm

y

i,t = eyGeq (∞)Xi,t, and the long-run stock risk premiums, ˜bm
r

i,t = e7Geq (∞)Xi,t, where

Geq (∞) = A
(
I − ρeqA

)−1
. Standard errors, reported in parentheses under each coeffi cient, are clustered

by time.
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terially change the decomposition results for bonds. The expected returns and credit loss

components each accounts for slightly more than half of the total variation in credit spreads.

Panel C shows the decomposition results for stocks and their relationships with the

bond decomposition. The volatility ratio for the profitability, σ( ˜bm
y
)

σ( ˜bm)
, is 1.02, while the

volatility ratio for the risk premium, σ(
˜bm
r
)

σ( ˜bm)
, is only 0.10. These findings are consistent with

Vuolteenaho (2002), who finds that for large stocks, the cash flow component is the major

source of variation of the book-to-market ratio. Specifically, Vuolteenaho (2002) reports that

for big stocks, the volatility of discount rate shocks is
√

0.0040 = 0.06, while the volatility

of cash flow shocks is
√

0.0319 = 0.18 (see his Table 4). Since my sample is tilted toward

large firms, much of the variation in stock prices corresponds to the expected profitability

variation.

Panel C also shows that the correlation between bonds’expected credit loss and stocks’

profitability, %(s̃l, ˜bm
y
), is negative and statistically significant. This estimate seems rea-

sonable, as more profitable firms are less likely to default. In contrast, the correlation in

risk premium between bonds and stocks, %(s̃r, ˜bm
r
), is insignificant. If the Merton (1974)

model holds and leverage is (cross sectionally) constant, then the correlation in risk premium

should be one. The weak risk premium correlation suggests that the variation in leverage

or risk-factors other than firms’asset value breaks the correlation between bond and stock

risk premiums.

Interestingly, the correlation between the expected credit loss for bonds and the risk

premiums for stocks, %(s̃l, ˜bm
r
), is statistically significantly negative. The firms closer to

default earns lower expected returns on their stocks. This negative correlation is consistent

with Campbell, Hilscher and Szilagyi (2008), who find the distress anomaly using the entire

universe of stocks. However, the negative correlation poses a challenge for the rational asset

pricing models which typically predict that riskier stocks earn higher expected returns.

To better understand the distress anomaly, we turn to Panel A of Table 3, which shows
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the long-run forecasting coeffi cients for bonds and stocks. Throughout the credit ratings,

holding everything else constant, higher spreads forecast higher expected credit loss for

bonds, and the effect is more pronounced for high yield bonds. In contrast, higher credit

spreads insignificantly predict long-run stock returns for IG bonds, while higher spreads

predict lower stock returns for high yield bond issuers. Once we control for credit spreads,

log book-to-market ratio does not help predict returns on bonds or stocks. As a result, I find

the distress anomaly in which stocks with higher default risk earn lower expected returns.

5 Aggregate Credit Spread Dynamics and the Effects

on Investment

5.1 Decomposition of the Market Portfolio of Corporate Bonds

Campbell and Shiller (1988a and 1988b) and Cochrane (2008 and 2011) emphasize the im-

portance of time-varying risk premiums in understanding the price of the stock market

portfolio. In contrast, Vuolteenaho (2002) finds that cash flow shocks are more important

for individual stocks. Thus far, I find that the expected default component is about as

important as the expected excess return component for individual corporate bonds. How-

ever, given the evidence in the stock market, these results may be different for the aggregate

corporate bond market portfolio. To examine the difference for the aggregate market, I take

the equal-weighted average of individual variables in each month to obtain the aggregate

variables, and denote them with subscripts EW . For example, the equal-weighted market

portfolio returns are computed by

reEW,t ≡
1

Nt

Nt∑
i=1

rei,t,
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where Nt is the number of bonds in month t. These equal-weighted average returns and

credit spreads are an approximation to the logarithm of the market returns and spreads, as

the average of the logarithm is not, in general, equal to the logarithm of the averages.

Using these aggregate variables, I run a restricted VAR with a state vector:

Xi,t =

(
rei,t di,tsi,t τPDi,t reEW,t sEW,t τPDEW,t

)
, (13)

which follows the dynamics

Xi,t+1 = AXi,t +Wi,t+1.

I restrict the three-by-six entries at the lower left corner of the matrix A to be zero, so

that the current individual variables do not forecast the future aggregate variables. By

including the aggregate variables, I can exploit the cross-sectional variation of individual

bonds without demeaning. Thus, based on this VAR with aggregate variables, the cross-

sectional average of the estimated expected credit loss and excess returns will not be zero,

making it possible to examine the variation in the average expected credit loss and excess

returns over time.

I show the estimated VAR coeffi cients in Appendix C. Panels A and B of Table 4 show

that the variance decomposition for individual bonds do not change much after including

aggregate variables in the VAR. For the cross-section of individual bonds, the volatility

ratio for expected credit loss is 0.69, which is similar to the ratio for expected excess return

(0.63).

Panel C shows the variance decomposition for the equal-weighted market portfolio, im-

plied by the VAR. The difference in volatility ratios between the individual bond level and

the aggregate level is large: At the aggregate portfolio level, the volatility ratio for the ex-

pected credit loss is only 0.27, while the ratio for the expected excess returns is 0.96, much

higher than the expected credit loss. Indeed, nearly 100% of the time-series variation in
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Table 4: Decomposition of the Equal-Weighted Market Portfolio
Panel A: Long-run regression coeffi cients, eLG(T̄ ) and e1G(T̄ )

rei,t si,t si,td
Baa
i,t si,td

Ba
i,t si,td

B−
i,t τPDi,t reEW,t sEW,t τPDEW,t σ(Et[·])∑T̄

j=1 ρ
j−1li,t+j -0.06 0.07 0.15 0.41 0.76 0.10 0.07 -0.20 -0.27 7.91

(0.02) (0.06) (0.05) (0.13) (0.14) (0.05) (0.02) (0.12) (0.11)∑T̄
j=1 ρ

j−1rei,t+j 0.06 0.93 -0.16 -0.41 -0.76 -0.10 -0.07 0.21 0.27 7.19
(0.02) (0.06) (0.06) (0.13) (0.14) (0.05) (0.02) (0.13) (0.11)

Panel B: Variation of VAR-implied conditional expectations (individual bonds)
σ(sl)
σ(s)

σ(sr)
σ(s) %(sl, s) %(sr, s) %(sl, sr)

Estimates 0.69 0.63 0.74 0.66 -0.01
(0.14) (0.04) (0.03) (0.17) (0.23)

Panel C: Variance decomposition of the aggregate portfolio
σ(slEW )
σ(sEW )

σ(srEW )
σ(sEW ) %(slEW , sEW ) %(srEW , sEW ) %(slEW , s

r
EW ) Div. factor

Estimates 0.27 0.96 0.56 0.97 0.36 slEW srEW
(0.06) (0.13) (0.42) (0.02) (0.43) 0.08 1.17

The sample period is monthly from 1973 to 2011. Panel A shows the VAR-implied long-run coeffi cient

for a bond with the average maturity, eLG(T̄ ) and e1G(T̄ ) where G(T̄ ) = A (I − ρA)
−1
(
I − (ρA)

T̄−t
)
.

dθi,t is a dummy variable for the rating θ and σ (Et[·]) shows the sample standard deviation of fitted values
of the left-hand side variables. The variables with subscript EW are the equal-weighted average across
bonds, computed every month. Panel B shows the summary statistics of the long-run expected credit loss
for individual bonds, sli,t = eLG (Ti)Xi,t, and the long-run expected returns, sri,t = e1G (Ti)Xi,t. % (·, ·)
shows the sample correlation coeffi cient. Panel C shows the summary statistics for the aggregate expected
credit loss, slEW = 1

Nt

∑
sli,t and the aggregate risk premium, s

r
EW = 1

Nt

∑
sri,t. Standard errors, reported

in parentheses under each coeffi cient, are clustered by time. Div. factor is σ2
(
suEW,t

)
/σ̄2

(
sui,t
)
, where

σ̄2
(
sui,t
)
is the time-series variance for bond i, σ2

(
sui,t
)
, averaged across bonds.
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the aggregate credit spreads corresponds to the variation in risk premiums. The correlation

between the credit spread and risk premiums is close to one as well.

The large discrepancy in decomposition results between the cross-section of individual

bonds and the aggregate portfolio is due to the diversification effects. Following Vuolteenaho

(2002), I compute the diversification factor:

Diversification Factor =
σ2
(
suEW,t

)
σ̄2
(
sui,t
) u ∈ {l, r} ,

where σ̄2
(
sui,t
)
≡ 1

N

∑N
i=1 σ

2
i

(
sui,t
)
. The diversification factor compares the variance of the

market variable with the average of the variance of the individual variable. If the variation

of the individual variable is idiosyncratic, then the diversification factor becomes close to

zero. In contrast, if much of the variation of the individual variable comes from a systematic

shock, then the diversification factor becomes larger. Table 4 shows that the diversification

factor is 0.08 for the expected credit loss while it is 1.17 for the expected excess returns. The

diversification factors show that much of the variation in individual bonds’expected credit

loss is due to idiosyncratic shocks, while much of the variation in expected excess returns

is from systematic shocks. Thus, my findings are consistent with the previous findings in

stocks, in which the risk premium variation dominates the aggregate dynamics, while the

cash flow variation is significant for individual securities.

5.2 Effects of Credit Spreads on Investment

In this section, I examine how the two components of credit spreads affect firms’investment

in the future. Philippon (2009) shows that credit spreads can be a proxy for Tobin’s q, and

Gilchrist and Zakrajšek (2012) find that many macro economic variables are forecastable

mainly by the “excess bond premium”, or the residuals of credit spreads unexplained by the

default risk based on the Merton (1974) model.
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Tobin’s q theory does not discriminate between the risk premium variation and cash flow

variation as a determinant of investment. A firm should change its investment in response

to a changing market value of its assets, regardless of whether the change comes from the risk

premium or cash flow shocks. However, there are several reasons why different components

of credit spreads may affect investments differently.

First, Stein (1996) argues that, if investors are irrational and a firm manager is rational,

then the manager whose firm is not financially constrained should ignore the risk premium

variation in making an investment decision to maximize the long-run firm value8. If firm

managers follow this advice in reality, then the variation in the expected excess returns

should not predict investments, while the expected credit loss component should. Second,

the expected default component can affect firms’ investment decisions due to managerial

frictions and market segmentations (e.g. debt overhang of Myers (1977)). If the firm is

close to default, the conflict between bond holders and equity holders intensifies, which

can reduce the firm’s investment. Third, Tobin’s (average) q is a convex function of credit

spreads (see Philippon’s (2009) Figure 1) due to changing put option delta. A unit change in

credit spreads for low spread bonds (which are mostly driven by risk premiums) corresponds

to a larger change in Tobin’s q than a change in spreads for high yield bonds (which are

mostly associated with expected credit loss). Thus, the risk premium component may affect

investments more than the expected default. As the above explanations work in opposite

directions, which part of the credit spreads better forecasts investment is unclear based on

the existing theories. Thus, I let the data tell which effects seem to dominate the other.

To this end, I use the decomposition results based on the VAR including macro variables

in Table 4, in order to contrast the results at the individual firm level with the results at the

aggregate level. I take the average of all the bonds issued by a firm to estimate the firm-level

expected excess returns and credit loss. I forecast the investment rate, measured by the

8Consistent with this view of the financial market, Greenwood and Hanson (2013) find some evidence for
time-varying mispricing in the corporate bond market.
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ratio of the capital expenditures this fiscal year to capital (measured by property, plant and

equipment) at the end of the previous year, using the variables as of the end of the previous

year. Since firms’fiscal years end in different months, I use monthly bond data to find the

exact fiscal year end and discard the bond information in other months of the fiscal year. I

also use the book-to-market ratio, profitability, sales-to-capital ratio, idiosyncratic volatility

and lagged investment rate of the firm as controls, following Gilchrist, Sim and Zakrajšek

(2013). For this exercise, I exclude financial firms (SIC codes from 6000 to 6800), as the

nature of investment and capital is different for the financial and nonfinancial industries.

First, I focus on the individual firm-level variation and run pooled OLS regressions. I

demean all variables using the cross-sectional average every month, and exploit the cross-

sectional variation. Panel A of Table 5 shows the results of the forecasting regressions. The

first two columns show the forecasting regressions using each component of credit spreads

separately, controlling only for the lagged value of the investment rate. Both the expected

credit loss and excess return components negatively forecast the investment next period,

with the estimated slope coeffi cients of -0.37 and -0.49, respectively.

I include all the other control variables in the next two columns. The forecasting power

of the expected credit loss and risk premium decreases slightly, but it is still statistically

significant. When the expected credit loss rises by one percent, the investment rate falls by

0.24 percent next year, while a one-percent rise in the expected excess returns leads to a 0.20

percent decrease in the investment rate. The results are similar when I include both the

expected credit loss and excess returns in the same regression, as shown in the last column.

Thus, at the firm level, both the expected default and risk premium components play a

significant role in affecting individual firms’investment decisions.

To examine the effects at the aggregate level, I also take the equal-weighted average of

all variables every year to obtain the market-level variable and run time-series regressions.

Panel B of Table 5 shows the estimated coeffi cients of the forecasting regressions at the
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Table 5: Investment Forecasting Regressions: Firm-Level Annual Data From 1973 to 2012
Panel A: Individual Firms Panel B: Equal-Weighted Market Portfolios
Left-hand side variable: log I/Kk,t+12 Left-hand side variable: log I/KEW,t+12

Et[
∑
j ρ

j−1lt+j ] -0.37 -0.24 -0.26 -3.36 -3.81 -0.27
(0.08) (0.09) (0.09) (1.66) (1.24) (0.56)

Et[
∑
ρj−1ret+j ] -0.49 -0.20 -0.29 -2.20 -2.74 -2.70

(0.11) (0.09) (0.10) (0.22) (0.25) (0.23)

bmt -0.15 -0.15 -0.15 -0.19 0.02 0.02
(0.01) (0.01) (0.01) (0.04) (0.03) (0.04)

log Π/Kt 0.00 0.01 0.01 4.08 -1.36 -1.35
(0.15) (0.16) (0.15) (1.47) (0.70) (0.72)

log Y/Kt 0.06 0.06 0.06 0.44 0.35 0.35
(0.01) (0.01) (0.01) (0.13) (0.12) (0.12)

σIVt 0.03 0.02 0.03 -0.02 0.02 0.02
(0.02) (0.01) (0.02) (0.04) (0.03) (0.03)

log I/Kt 0.67 0.67 0.58 0.58 0.58 0.53 0.42 0.36 0.30 0.30
(0.02) (0.02) (0.02) (0.02) (0.02) (0.10) (0.07) (0.08) (0.07) (0.07)

R̄2 0.48 0.48 0.51 0.51 0.51 0.32 0.75 0.54 0.82 0.82
Panel A shows the result of the forecasting regression of the log investment rate for firm k over the period
between t and t+12, log I/Kk,t+12, using the components of credit spreads in month t. The forecasting coef-
ficients are estimated using pooled OLS regressions. The variables Et[

∑
j ρ

j−1lk,t+j ] and Et[
∑
j ρ

j−1rek,t+j ]
are the long-run expected credit loss and excess returns estimated based on the VAR with the state vector
in (13). The components of credit spreads for firm k are computed by taking the average of all bonds issued
by firm k each month. The variable log Π/Kk,t is the log profitability (operating profit divided by property,
plant and equipment), log Y/Kk,t is the log ratio of sales to capital, log σIVk,t is the log idiosyncratic volatility
computed following Ang, Hodrick, Xing and Zhang (2006), and log I/Kk,t is the lagged log investment rate
for firm k in the fiscal year ending in month t. R̄2 is an adjusted R-squared. Standard errors, reported
in parentheses, are clustered by time and adjusted for autocorrelation with Newey-West 12 lags. All vari-
ables are demeaned using the equal-weighted average every month, and winsorized at the 0.1th and 99.9th
percentile. The number of observations is 7,300 firm years.
Panel B shows the result of the forecasting regression of the equal-weighted average of the log investment
rate from t to t+ 12, log I/KEW,t+12. All explanatory variables are also the equal-weighted average of the
individual firms. Standard errors, reported in parentheses, are adjusted for autocorrelation with Newey-West
3 lags. The number of observations is 39 years.
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Figure 2: Equal-Weighted Average Investment Ratio, Expected Credit Loss and Expected
Excess Returns

The figure plots the equal-weighted average investment ratio, log I/KEW,t, expected credit loss, slEW,t, and
expected excess returns, srEW,t. The expected credit loss and excess returns are moved forward by one year,
so I plot slEW,t and s

r
EW,t in t+ 1. All variables are demeaned.

market level. When the expected credit loss and excess returns are used separately, with

or without other control variables, both of them negatively predict the investment rate next

year. However, when the two components are put together in the same regression, the

expected return dominates the expected credit loss in forecasting investment. Figure 2

shows the time series of the aggregate investment rate, expected credit loss and expected

excess returns. The negative correlation between the investment rate and the expected

excess return component of credit spreads (forwarded one year) is evident throughout the

sample period. In contrast, the expected credit loss component moves little over time

and is less correlated with the investment rate. Thus, my findings are consistent with the

interpretation that much of the management’s reaction to bonds’mispricing and frictions

among the firm’s stake holders, if they exist, are firm-specific, and affect only the individual

firms’investment decision, not the aggregate investment.

6 Conclusion

I show that the credit spreads of corporate bonds can be decomposed into an expected excess

return component and an expected credit loss component without relying on a particular

model of default. Applying the Campbell-Shiller (1988a) style decomposition, I show that

about half of the cross-sectional variation of the credit spreads corresponds to changes in the

risk premium, and its volatility is almost as large as that of the expected credit loss.

By estimating the VARs including market-level variables, I contrast the firm- or bond-

level results with the decomposition of the market portfolio. Though the expected credit
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loss is as important as the expected excess returns at the individual bond level, the risk

premium component is the dominating factor in the aggregate credit spread dynamics. Since

much of the expected default loss variation at the security level is idiosyncratic, the credit

loss components are mostly diversified away in the aggregate market, and their aggregate

volatility is small.

In addition to forecasting corporate investment, understanding the information in credit

spreads is important for a dynamic portfolio choice problem, since part of the variation in

credit spreads signals the variation in expected returns. The decomposition is also important

for credit risk management, as one might use credit spreads to measure default risk. My

analysis shows that credit spreads forecast both excess returns and default in the future, and

thus provide a useful signal for portfolio management.

One analysis left for the future is to explore the role of illiquidity in corporate bonds

within the variance decomposition framework. If an investor expects the corporate bond

will become illiquid when she has to sell in the future, then she might discount the valuation

of the bond today, leading to a variation in credit spreads. The variance decomposition

approach can be easily extended to account for illiquidity, though the empirical measurement

of illiquidity poses a challenge for the extension.
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A Derivation of the Credit Spread Decomposition

In this appendix, I show the detailed derivation of (1). First, I assume that the recovery

rate for the coupon upon default is the same as that of the principal. Formally, I assume

Cf
i,t

Ci,t
= exp (li,t) . (14)

Furthermore, I make the technical assumption that after a default occurs, the investor buys

the Treasury bond with the coupon rate equal to the original coupon rate, Ci, and short the

same bond so that the credit spreads and excess returns are always zero.

I log-linearize returns on corporate bond i such that

ri,t+1 ≈ ρδi,t+1 − δi,t + ∆ci,t+1 + const, (15)

where δi,t ≡ logPi,t/Ci,t and ∆ci,t+1 ≡ logCi,t+1/Ci,t.

Similarly, I log-linearize returns on the matching Treasury bonds using the same expan-

sion point, ρ:

rfi,t+1 ≈ ρδfi,t+1 − δ
f
i,t + ∆cfi,t+1 + const, (16)

where δi,t ≡ logP f
i,t/C

f
i,t and ∆cfi,t+1 ≡ logCf

i,t+1/C
f
i,t.

Subtracting (16) from (15) yields

ri,t+1 − rfi,t+1 ≈ −ρ
(
δfi,t+1 − δi,t+1

)
+
(
δfi,t − δi,t

)
−
(

∆cfi,t+1 −∆ci,t+1

)
+ const. (17)
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The second term of (17) can be written as

δfi,t − δi,t = log

(
P f
i,t

Pi,t

Ci,t

Cf
i,t

)
,

=


log

(
P fi,t
Pi,t

)
if t 6= tD

0 if t = tD

,

= si,t. (18)

In the second equality, I use the fact that the matching Treasury bond has the same coupon

rate as the corporate bond, as well as the definition of li,t in (3) and the assumption in (14).

The last term of (17) is

∆cfi,t+1 −∆ci,t+1 = log

(
Cf
i,t+1

Ci,t+1

Ci,t

Cf
i,t

)
.

This term can be thought of separately for the three cases: (i) When t 6= tD and t+ 1 6= tD,

we have Cf
i,t+1/Ci,t+1 = Cf

i,t/Ci,t = 1 as the matching Treasury bond has the same coupon

rate. (ii) When t 6= tD and t + 1 = tD, we have C
f
i,t+1/Ci,t+1 = exp (li,t+1) by assumption

(14), and Cf
i,t/Ci,t = 1. (iii) When t = tD and t + 1 6= tD, we have Ci,t/C

f
i,t = exp (−li,t).

However, as I assume that right after the default (time t+), the investor buys the bond

with the coupon rate equal to Ci, we have C
f
i,t+1 = Ci,t+1 = Cf

i,t+ = Ci,t+ = Ci, so that

∆cfi,t+1 −∆ci,t+1 = log

(
Cfi,t+1
Ci,t+1

Ci,t+

Cfi,t+

)
= 0. Combining the three cases, we have

∆cfi,t+1 −∆ci,t+1 = li,t+1. (19)

Plugging (18) and (19) into (17) leads to the one-period pricing identity in (1).

In the decomposition of the credit spread in (1), there are no terms involving coupon

rates, Ci,t or C
f
i,t. Since I work on excess returns rather than returns, the coupons from

corporate bonds tend to offset the coupons from the matching Treasury bonds. In addition,
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I make the assumption in (14), and thus I completely eliminate the coupon payment from

the approximated log excess returns. This feature of the excess returns is convenient as

I work on monthly returns. Otherwise, the strong seasonality of coupon payments would

make it necessary to use the annual frequency rather than the monthly frequency. Due

to the offsetting nature of the excess returns over matching Treasury bonds, I can work on

monthly series without adjusting for seasonality.

B Data

B.1 Corporate Bond Database

In this section, I provide a more detailed description of the panel data of corporate bond

prices. I obtain monthly price observations of senior unsecured corporate bonds from the

following four data sources. First, for the period from 1973 to 1997, I use the Lehman Broth-

ers Fixed Income Database, which provides month-end bid prices. Since Lehman Brothers

used these prices to construct the Lehman Brothers bond index while simultaneously trad-

ing it, the traders at Lehman Brothers had an incentive to provide correct quotes. Thus,

although the prices in the Lehman Brothers Fixed Income Database are quote-based, they

are considered reliable.

In the Lehman Brothers Fixed Income Database, some observations are dealers’quotes

while others are matrix prices. Matrix prices are set using algorithms based on the quoted

prices of other bonds with similar characteristics. Though matrix prices are less reliable

than actual dealer quotes (Warga and Welch (1993)), I choose to include matrix prices in

our main result to maximize the power of the test. However, I also repeat the main exercise

below and show that the results are robust to the exclusion of matrix prices.

Second, for the period from 1994 to 2011, I use the Mergent FISD/NAIC Database. This

database consists of actual transaction prices reported by insurance companies. Third, for
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the period from 2002 to 2011, I use TRACE data, which provides actual transaction prices.

TRACE covers more than 99 percent of the OTC activities in U.S. corporate bond markets

after 2005. The data from Mergent FISD/NAIC and TRACE are transaction-based data,

and therefore the observations are not exactly at the end of months. Thus, I use only the

observations that are in the last five days of each month. If there are multiple observations

in the last five days, I use the latest one and treat it as a month-end observation. Lastly, I

use the DataStream database, which provides month-end price quotes from 1990 to 2011.

TRACE includes some observations from the trades that are eventually cancelled or

corrected. I drop all cancelled observations, and use the corrected prices for the trades that

are corrected. I also drop all the price observations that include dealer commissions, as the

commission is not reflecting the value of the bond, and these prices are not comparable to

the prices without commissions.

Since there are some overlaps among the four databases, I prioritize in the following

order: the Lehman Brothers Fixed Income Database, TRACE, Mergent FISD/NAIC and

DataStream. The number of overlaps is not large relative to the total size of the data set,

with the largest overlaps between TRACE and Mergent FISD making up 3.3% of the non-

overlapping observations. To check the data consistency, I examine the effect of priority

ordering by reversing the priority, and the effect of the price difference on the empirical result

below.

To classify the bonds based on credit ratings, I use the ratings of Standard & Poor’s

when available, and use Moody’s ratings when Standard & Poor’s rating is not available.

To identify defaults in the data, I use Moody’s Default Risk Service, which provides a

historical record of bond defaults from 1970 onwards. The same source also provides the

secondary-market value of the defaulted bond one month after the incident. If the price

observation in the month when a bond defaults is missing in the corporate bond database,

I add the Moody’s secondary-market price to my data set in order to include all default
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observations in the sample.

B.2 Comparing Overlapping Data Sources

Table 6 compares the summary statistics of the monthly returns of corporate bonds in my

sample (Panel A) with the alternative database, which uses the reverse priority (Panel B).

Namely, in constructing the alternative database, I prioritize in the following order: DataS-

tream, Mergent FISD/NAIC, TRACE and the Lehman Brothers Fixed Income Database.

To see a detailed picture, I tabulate the returns based on credit ratings and time periods. I

split the sample into two periods: January 1973 to March 1998 and April 1998 to December

2011. I choose the cutoff of March 1998 because the Lehman Brothers Fixed Income Data-

base is available up to March 1998. As there are more duplicate observations after April

1998, the latter period may show a greater differences between the two priority orders.

Comparing the distribution of bond returns in Panel A with that in Panel B, there is

very little difference at any rating category or in any time period. The greatest discrepancy

is found in junk bonds from January 1973 to March 1998. The mean for the sample used in

this paper is 1.35 percent with the standard deviation of 51.42 percent, while they are 1.20

percent and 35.10 percent in the alternative sample. As the most of the percentiles coincide

between the two distributions, the difference comes from the maximum of the distribution.

In the online appendix, I show that the variance decomposition results in Table 2 remain

unchanged when I estimate the VAR using the dataset with the reverse priority order. Thus,

the results in this paper is not driven by a particular priority order among the databases.

B.3 Construction of Matching Treasury Bonds

In this section, I explain the methodology to construct prices of the matching Treasury bonds.

First, I interpolate the Treasury yield curve using cubic splines and construct Treasury zero-
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Table 6: Comparing Monthly Corporate Bond Returns (Percent)
Percentile

Period Rating Mean Median Std. 1 5 10 25 75 90 95 99
Panel A: Priority Order = Lehman Brothers, TRACE, Mergent FISD, DataStream
1973/1 Aaa/Aa 0.75 0.59 7.47 -7.87 -3.88 -2.38 -0.53 1.84 3.68 5.19 10.06

to A 0.71 0.71 2.59 -6.30 -3.55 -2.26 -0.43 1.85 3.50 4.89 7.92
1998/3 Baa 0.82 0.77 2.64 -5.99 -3.46 -2.15 -0.33 1.96 3.68 5.07 8.15

HY 1.35 0.95 51.42 -11.82 -4.76 -2.89 -0.21 2.33 4.92 6.90 13.38

Subtotal 0.88 0.76 23.64 -7.76 -3.86 -2.37 -0.39 1.97 3.87 5.47 9.89

1998/4 Aaa/Aa 0.57 0.59 2.26 -6.24 -2.71 -1.49 -0.06 1.11 2.62 3.89 7.88
to A 0.63 0.60 2.73 -7.06 -2.92 -1.67 -0.17 1.34 2.98 4.38 8.98

2011/12 Baa 0.66 0.59 14.71 -9.22 -3.26 -1.79 -0.24 1.49 3.18 4.73 10.12
HY 0.79 0.69 9.04 -14.41 -3.95 -1.70 0.39 1.19 3.29 5.59 15.90

Subtotal 0.71 0.64 10.33 -10.43 -3.38 -1.71 -0.01 1.33 3.15 4.91 12.04

Panel B: Priority Order = DataStream, Mergent FISD, TRACE, Lehman Brothers
1973/1 Aaa/Aa 0.74 0.59 7.45 -7.87 -3.87 -2.38 -0.53 1.84 3.67 5.18 10.06

to A 0.71 0.71 2.59 -6.31 -3.54 -2.25 -0.42 1.84 3.49 4.88 7.93
1998/3 Baa 0.82 0.78 2.64 -6.01 -3.45 -2.13 -0.32 1.95 3.66 5.05 8.16

HY 1.20 0.95 35.10 -11.82 -4.75 -2.85 -0.21 2.33 4.89 6.89 13.43

Subtotal 0.85 0.76 16.40 -7.78 -3.85 -2.35 -0.39 1.97 3.85 5.46 9.89

1998/4 Aaa/Aa 0.57 0.59 2.33 -6.61 -2.71 -1.45 -0.03 1.08 2.56 3.86 8.20
to A 0.68 0.59 16.29 -7.66 -2.84 -1.60 -0.11 1.29 2.89 4.32 9.49

2011/12 Baa 0.72 0.59 22.11 -9.28 -3.12 -1.66 -0.17 1.44 3.07 4.57 9.99
HY 0.77 0.69 5.29 -14.18 -3.79 -1.57 0.43 1.15 3.19 5.45 15.73

Subtotal 0.73 0.64 15.25 -10.49 -3.26 -1.60 0.04 1.28 3.05 4.79 12.09
The top panel reports the summary statistics of the (gross) corporate bond returns used in the paper. The
bottom panel reports the summary statistics of the data where the priority across the database is reversed
(DataStream, Mergent FISD, TRACE, Lehman Brothers). HY is high yield bonds that are rated Ba or
below.
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coupon curves by bootstrapping. At each month and for each corporate bond in the data

set, I construct the future cash flow schedule for the coupon and principal payments. Then

I multiply each cash flow by the zero-coupon Treasury bond price with the corresponding

time to maturity. I add all of the discounted cash flows to obtain the synthetic Treasury

bond price that matches the corporate bond. I do this process for all corporate bonds at

each month to obtain the panel data of matching Treasury bond prices. With this method,

the credit spread measure is, in principle, unaffected by changes in the Treasury yield curve.

C VAR Coeffi cients for the Joint Decomposition of

Bonds and Stocks, and for the Aggregate Portfolios

In this section, I show the coeffi cient estimates for the VAR used in Section 4 and 5. In

both cases, the dynamics are given by (7). For the joint variance decomposition for bonds

and stocks, reported in Section 4, I estimate the VAR using the state vector in (12). The

estimated coeffi cients and their standard errors are presented in Panel A of Table 7. For the

variance decomposition including the aggregate variables, reported in Section 5, the state

vector in (13) applies. The estimated coeffi cients and their standard errors are presented in

Panel B.
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Table 7: Estimated VAR Coeffi cients: Monthly from 1973 to 2011
Panel A: VAR estimates for bond and stock decomposition, A× 100

r̃ei,t s̃i,t s̃i,td
Baa
i,t s̃i,td

Ba
i,t s̃i,td

B−
i,t τ ˜PDi,t r̃eqi,t

˜bmi,t R2

r̃ei,t+1 -6.19 2.93 -0.30 0.38 -2.23 -0.05 3.79 -0.07 0.02
(1.86) (0.66) (0.31) (0.61) (0.69) (0.21) (0.37) (0.02)

s̃i,t+1 10.11 97.74 0.31 -0.31 -1.53 0.13 -2.72 0.04 0.91
(2.43) (0.68) (0.32) (0.61) (0.93) (0.22) (0.57) (0.02)

s̃i,t+1d
Baa
i,t+1 4.25 0.91 95.11 0.14 -0.72 -0.08 -0.55 0.00 0.90

(0.48) (0.12) (0.82) (0.26) (0.15) (0.09) (0.07) (0.01)
s̃i,t+1d

Ba
i,t+1 2.19 0.16 1.33 92.53 0.09 -0.11 -0.40 0.01 0.85

(0.48) (0.07) (0.23) (0.95) (0.09) (0.06) (0.09) (0.01)
s̃i,t+1d

B−
i,t+1 -1.20 -0.17 0.21 3.63 95.47 0.50 -1.17 0.00 0.87

(1.83) (0.09) (0.09) (0.58) (1.02) (0.13) (0.52) (0.01)
τ ˜PDi,t+1 -3.07 1.51 -0.23 1.43 3.15 96.59 -2.46 0.15 0.93

(1.22) (0.41) (0.46) (0.63) (0.90) (1.06) (0.72) (0.05)
r̃eqi,t+1 11.00 -0.13 0.83 -0.57 -4.88 -0.86 0.60 0.07 0.00

(2.57) (0.58) (0.63) (1.07) (1.11) (0.92) (1.28) (0.10)
˜bmi,t+1 -12.45 2.23 -2.53 0.81 2.81 -1.76 -1.23 98.58 0.97

(2.81) (0.98) (1.03) (1.21) (1.33) (1.53) (1.38) (0.32)

Panel B: VAR estimates with the aggregate variables, A× 100

rei,t si,t si,td
Baa
i,t si,td

Ba
i,t si,td

B−
i,t τPDi,t reEW,t sEW,t τPDEW,t R2

rei,t+1 -4.95 4.64 -1.60 -2.29 -3.76 -0.21 -6.84 0.63 3.93 0.02
(1.99) (1.04) (0.49) (0.82) (0.90) (0.26) (7.26) (1.92) (2.06)

si,t+1 12.18 95.16 1.77 2.49 1.17 0.1 -0.48 -0.24 -3.99 0.90
(2.75) (1.06) (0.50) (0.83) (0.99) (0.23) (7.43) (1.93) (2.06)

si,td
Baa
i,t 5.25 0.73 95.68 -0.17 -0.73 -0.02 -2.85 0.53 -1.67 0.92

(0.55) (0.25) (0.82) (0.25) (0.24) (0.12) (2.36) (0.62) (0.76)
si,td

Ba
i,t 1.98 -0.09 1.25 95.65 0.41 -0.17 -1.62 0.27 -0.72 0.90

(0.63) (0.13) (0.15) (0.84) (0.13) (0.08) (1.34) (0.32) (0.32)
si,td

B−
i,t -1.36 -0.89 0.43 2.68 96.74 0.48 -0.21 1.11 -1.55 0.91

(2.34) (0.24) (0.11) (0.30) (0.81) (0.16) (2.36) (0.39) (0.40)
τPDi,t+1 -3.48 3.13 -1.07 -0.05 1.22 96.55 -1.26 2.58 -2.82 0.93

(1.29) (0.57) (0.50) (0.46) (0.73) (1.06) (3.58) (1.12) (1.72)
reEW,t+1 0 0 0 0 0 0 -8.11 2.21 4.21 0.04

(8.34) (2.22) (2.36)
sEW,t+1 0 0 0 0 0 0 4.48 97.74 -2.13 0.89

(8.18) (2.05) (2.11)
τPDEW,t+1 0 0 0 0 0 0 -6.80 6.07 94.17 0.98

(4.80) (1.42) (2.51)
rei,t is the log return on the corporate bonds in excess of the matching Treasury bond, li,t is the credit loss,
si,t is the credit spread of the corporate bonds, τPDi,t is the probability of default implied by the Merton
model times the bond’s duration, reqi,t is issuer’s equity return in excess of T-bill rate and bmi,t is log issuer’s
equity book-to-market ratio. dθi,t is a dummy variable for the rating θ. The variables with subscript EW
are the equal-weighted average across bonds, computed every month.
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